Mister Exam

Other calculators


sqrt(10-x^2)

Integral of sqrt(10-x^2) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                
  /                
 |                 
 |     _________   
 |    /       2    
 |  \/  10 - x   dx
 |                 
/                  
0                  
$$\int\limits_{0}^{1} \sqrt{- x^{2} + 10}\, dx$$
Detail solution

    SqrtQuadraticRule(a=10, b=0, c=-1, context=sqrt(10 - x**2), symbol=x)

  1. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                                       
 |                                               _________
 |    _________                /    ____\       /       2 
 |   /       2                 |x*\/ 10 |   x*\/  10 - x  
 | \/  10 - x   dx = C + 5*asin|--------| + --------------
 |                             \   10   /         2       
/                                                         
$$5\,\arcsin \left({{x}\over{\sqrt{10}}}\right)+{{x\,\sqrt{10-x^2} }\over{2}}$$
The graph
The answer [src]
          /  ____\
3         |\/ 10 |
- + 5*asin|------|
2         \  10  /
$${{10\,\arcsin \left({{1}\over{\sqrt{10}}}\right)+3}\over{2}}$$
=
=
          /  ____\
3         |\/ 10 |
- + 5*asin|------|
2         \  10  /
$$\frac{3}{2} + 5 \operatorname{asin}{\left(\frac{\sqrt{10}}{10} \right)}$$
Numerical answer [src]
3.10875277198321
3.10875277198321
The graph
Integral of sqrt(10-x^2) dx

    Use the examples entering the upper and lower limits of integration.