Mister Exam

Other calculators


cos(7x)cos(3x)

Integral of cos(7x)cos(3x) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                     
  /                     
 |                      
 |  cos(7*x)*cos(3*x) dx
 |                      
/                       
0                       
01cos(3x)cos(7x)dx\int\limits_{0}^{1} \cos{\left(3 x \right)} \cos{\left(7 x \right)}\, dx
Integral(cos(7*x)*cos(3*x), (x, 0, 1))
Detail solution
  1. Rewrite the integrand:

    cos(3x)cos(7x)=256cos10(x)640cos8(x)+560cos6(x)196cos4(x)+21cos2(x)\cos{\left(3 x \right)} \cos{\left(7 x \right)} = 256 \cos^{10}{\left(x \right)} - 640 \cos^{8}{\left(x \right)} + 560 \cos^{6}{\left(x \right)} - 196 \cos^{4}{\left(x \right)} + 21 \cos^{2}{\left(x \right)}

  2. Integrate term-by-term:

    1. The integral of a constant times a function is the constant times the integral of the function:

      256cos10(x)dx=256cos10(x)dx\int 256 \cos^{10}{\left(x \right)}\, dx = 256 \int \cos^{10}{\left(x \right)}\, dx

      1. Rewrite the integrand:

        cos10(x)=(cos(2x)2+12)5\cos^{10}{\left(x \right)} = \left(\frac{\cos{\left(2 x \right)}}{2} + \frac{1}{2}\right)^{5}

      2. There are multiple ways to do this integral.

        Method #1

        1. Rewrite the integrand:

          (cos(2x)2+12)5=cos5(2x)32+5cos4(2x)32+5cos3(2x)16+5cos2(2x)16+5cos(2x)32+132\left(\frac{\cos{\left(2 x \right)}}{2} + \frac{1}{2}\right)^{5} = \frac{\cos^{5}{\left(2 x \right)}}{32} + \frac{5 \cos^{4}{\left(2 x \right)}}{32} + \frac{5 \cos^{3}{\left(2 x \right)}}{16} + \frac{5 \cos^{2}{\left(2 x \right)}}{16} + \frac{5 \cos{\left(2 x \right)}}{32} + \frac{1}{32}

        2. Integrate term-by-term:

          1. The integral of a constant times a function is the constant times the integral of the function:

            cos5(2x)32dx=cos5(2x)dx32\int \frac{\cos^{5}{\left(2 x \right)}}{32}\, dx = \frac{\int \cos^{5}{\left(2 x \right)}\, dx}{32}

            1. Rewrite the integrand:

              cos5(2x)=(1sin2(2x))2cos(2x)\cos^{5}{\left(2 x \right)} = \left(1 - \sin^{2}{\left(2 x \right)}\right)^{2} \cos{\left(2 x \right)}

            2. There are multiple ways to do this integral.

              Method #1

              1. Let u=2xu = 2 x.

                Then let du=2dxdu = 2 dx and substitute dudu:

                (sin4(u)cos(u)2sin2(u)cos(u)+cos(u)2)du\int \left(\frac{\sin^{4}{\left(u \right)} \cos{\left(u \right)}}{2} - \sin^{2}{\left(u \right)} \cos{\left(u \right)} + \frac{\cos{\left(u \right)}}{2}\right)\, du

                1. Integrate term-by-term:

                  1. The integral of a constant times a function is the constant times the integral of the function:

                    sin4(u)cos(u)2du=sin4(u)cos(u)du2\int \frac{\sin^{4}{\left(u \right)} \cos{\left(u \right)}}{2}\, du = \frac{\int \sin^{4}{\left(u \right)} \cos{\left(u \right)}\, du}{2}

                    1. Let u=sin(u)u = \sin{\left(u \right)}.

                      Then let du=cos(u)dudu = \cos{\left(u \right)} du and substitute dudu:

                      u4du\int u^{4}\, du

                      1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

                        u4du=u55\int u^{4}\, du = \frac{u^{5}}{5}

                      Now substitute uu back in:

                      sin5(u)5\frac{\sin^{5}{\left(u \right)}}{5}

                    So, the result is: sin5(u)10\frac{\sin^{5}{\left(u \right)}}{10}

                  1. The integral of a constant times a function is the constant times the integral of the function:

                    (sin2(u)cos(u))du=sin2(u)cos(u)du\int \left(- \sin^{2}{\left(u \right)} \cos{\left(u \right)}\right)\, du = - \int \sin^{2}{\left(u \right)} \cos{\left(u \right)}\, du

                    1. Let u=sin(u)u = \sin{\left(u \right)}.

                      Then let du=cos(u)dudu = \cos{\left(u \right)} du and substitute dudu:

                      u2du\int u^{2}\, du

                      1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

                        u2du=u33\int u^{2}\, du = \frac{u^{3}}{3}

                      Now substitute uu back in:

                      sin3(u)3\frac{\sin^{3}{\left(u \right)}}{3}

                    So, the result is: sin3(u)3- \frac{\sin^{3}{\left(u \right)}}{3}

                  1. The integral of a constant times a function is the constant times the integral of the function:

                    cos(u)2du=cos(u)du2\int \frac{\cos{\left(u \right)}}{2}\, du = \frac{\int \cos{\left(u \right)}\, du}{2}

                    1. The integral of cosine is sine:

                      cos(u)du=sin(u)\int \cos{\left(u \right)}\, du = \sin{\left(u \right)}

                    So, the result is: sin(u)2\frac{\sin{\left(u \right)}}{2}

                  The result is: sin5(u)10sin3(u)3+sin(u)2\frac{\sin^{5}{\left(u \right)}}{10} - \frac{\sin^{3}{\left(u \right)}}{3} + \frac{\sin{\left(u \right)}}{2}

                Now substitute uu back in:

                sin5(2x)10sin3(2x)3+sin(2x)2\frac{\sin^{5}{\left(2 x \right)}}{10} - \frac{\sin^{3}{\left(2 x \right)}}{3} + \frac{\sin{\left(2 x \right)}}{2}

              Method #2

              1. Rewrite the integrand:

                (1sin2(2x))2cos(2x)=sin4(2x)cos(2x)2sin2(2x)cos(2x)+cos(2x)\left(1 - \sin^{2}{\left(2 x \right)}\right)^{2} \cos{\left(2 x \right)} = \sin^{4}{\left(2 x \right)} \cos{\left(2 x \right)} - 2 \sin^{2}{\left(2 x \right)} \cos{\left(2 x \right)} + \cos{\left(2 x \right)}

              2. Integrate term-by-term:

                1. Let u=sin(2x)u = \sin{\left(2 x \right)}.

                  Then let du=2cos(2x)dxdu = 2 \cos{\left(2 x \right)} dx and substitute du2\frac{du}{2}:

                  u44du\int \frac{u^{4}}{4}\, du

                  1. The integral of a constant times a function is the constant times the integral of the function:

                    u42du=u4du2\int \frac{u^{4}}{2}\, du = \frac{\int u^{4}\, du}{2}

                    1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

                      u4du=u55\int u^{4}\, du = \frac{u^{5}}{5}

                    So, the result is: u510\frac{u^{5}}{10}

                  Now substitute uu back in:

                  sin5(2x)10\frac{\sin^{5}{\left(2 x \right)}}{10}

                1. The integral of a constant times a function is the constant times the integral of the function:

                  (2sin2(2x)cos(2x))dx=2sin2(2x)cos(2x)dx\int \left(- 2 \sin^{2}{\left(2 x \right)} \cos{\left(2 x \right)}\right)\, dx = - 2 \int \sin^{2}{\left(2 x \right)} \cos{\left(2 x \right)}\, dx

                  1. Let u=sin(2x)u = \sin{\left(2 x \right)}.

                    Then let du=2cos(2x)dxdu = 2 \cos{\left(2 x \right)} dx and substitute du2\frac{du}{2}:

                    u24du\int \frac{u^{2}}{4}\, du

                    1. The integral of a constant times a function is the constant times the integral of the function:

                      u22du=u2du2\int \frac{u^{2}}{2}\, du = \frac{\int u^{2}\, du}{2}

                      1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

                        u2du=u33\int u^{2}\, du = \frac{u^{3}}{3}

                      So, the result is: u36\frac{u^{3}}{6}

                    Now substitute uu back in:

                    sin3(2x)6\frac{\sin^{3}{\left(2 x \right)}}{6}

                  So, the result is: sin3(2x)3- \frac{\sin^{3}{\left(2 x \right)}}{3}

                1. Let u=2xu = 2 x.

                  Then let du=2dxdu = 2 dx and substitute du2\frac{du}{2}:

                  cos(u)4du\int \frac{\cos{\left(u \right)}}{4}\, du

                  1. The integral of a constant times a function is the constant times the integral of the function:

                    cos(u)2du=cos(u)du2\int \frac{\cos{\left(u \right)}}{2}\, du = \frac{\int \cos{\left(u \right)}\, du}{2}

                    1. The integral of cosine is sine:

                      cos(u)du=sin(u)\int \cos{\left(u \right)}\, du = \sin{\left(u \right)}

                    So, the result is: sin(u)2\frac{\sin{\left(u \right)}}{2}

                  Now substitute uu back in:

                  sin(2x)2\frac{\sin{\left(2 x \right)}}{2}

                The result is: sin5(2x)10sin3(2x)3+sin(2x)2\frac{\sin^{5}{\left(2 x \right)}}{10} - \frac{\sin^{3}{\left(2 x \right)}}{3} + \frac{\sin{\left(2 x \right)}}{2}

              Method #3

              1. Rewrite the integrand:

                (1sin2(2x))2cos(2x)=sin4(2x)cos(2x)2sin2(2x)cos(2x)+cos(2x)\left(1 - \sin^{2}{\left(2 x \right)}\right)^{2} \cos{\left(2 x \right)} = \sin^{4}{\left(2 x \right)} \cos{\left(2 x \right)} - 2 \sin^{2}{\left(2 x \right)} \cos{\left(2 x \right)} + \cos{\left(2 x \right)}

              2. Integrate term-by-term:

                1. Let u=sin(2x)u = \sin{\left(2 x \right)}.

                  Then let du=2cos(2x)dxdu = 2 \cos{\left(2 x \right)} dx and substitute du2\frac{du}{2}:

                  u44du\int \frac{u^{4}}{4}\, du

                  1. The integral of a constant times a function is the constant times the integral of the function:

                    u42du=u4du2\int \frac{u^{4}}{2}\, du = \frac{\int u^{4}\, du}{2}

                    1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

                      u4du=u55\int u^{4}\, du = \frac{u^{5}}{5}

                    So, the result is: u510\frac{u^{5}}{10}

                  Now substitute uu back in:

                  sin5(2x)10\frac{\sin^{5}{\left(2 x \right)}}{10}

                1. The integral of a constant times a function is the constant times the integral of the function:

                  (2sin2(2x)cos(2x))dx=2sin2(2x)cos(2x)dx\int \left(- 2 \sin^{2}{\left(2 x \right)} \cos{\left(2 x \right)}\right)\, dx = - 2 \int \sin^{2}{\left(2 x \right)} \cos{\left(2 x \right)}\, dx

                  1. Let u=sin(2x)u = \sin{\left(2 x \right)}.

                    Then let du=2cos(2x)dxdu = 2 \cos{\left(2 x \right)} dx and substitute du2\frac{du}{2}:

                    u24du\int \frac{u^{2}}{4}\, du

                    1. The integral of a constant times a function is the constant times the integral of the function:

                      u22du=u2du2\int \frac{u^{2}}{2}\, du = \frac{\int u^{2}\, du}{2}

                      1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

                        u2du=u33\int u^{2}\, du = \frac{u^{3}}{3}

                      So, the result is: u36\frac{u^{3}}{6}

                    Now substitute uu back in:

                    sin3(2x)6\frac{\sin^{3}{\left(2 x \right)}}{6}

                  So, the result is: sin3(2x)3- \frac{\sin^{3}{\left(2 x \right)}}{3}

                1. Let u=2xu = 2 x.

                  Then let du=2dxdu = 2 dx and substitute du2\frac{du}{2}:

                  cos(u)4du\int \frac{\cos{\left(u \right)}}{4}\, du

                  1. The integral of a constant times a function is the constant times the integral of the function:

                    cos(u)2du=cos(u)du2\int \frac{\cos{\left(u \right)}}{2}\, du = \frac{\int \cos{\left(u \right)}\, du}{2}

                    1. The integral of cosine is sine:

                      cos(u)du=sin(u)\int \cos{\left(u \right)}\, du = \sin{\left(u \right)}

                    So, the result is: sin(u)2\frac{\sin{\left(u \right)}}{2}

                  Now substitute uu back in:

                  sin(2x)2\frac{\sin{\left(2 x \right)}}{2}

                The result is: sin5(2x)10sin3(2x)3+sin(2x)2\frac{\sin^{5}{\left(2 x \right)}}{10} - \frac{\sin^{3}{\left(2 x \right)}}{3} + \frac{\sin{\left(2 x \right)}}{2}

            So, the result is: sin5(2x)320sin3(2x)96+sin(2x)64\frac{\sin^{5}{\left(2 x \right)}}{320} - \frac{\sin^{3}{\left(2 x \right)}}{96} + \frac{\sin{\left(2 x \right)}}{64}

          1. The integral of a constant times a function is the constant times the integral of the function:

            5cos4(2x)32dx=5cos4(2x)dx32\int \frac{5 \cos^{4}{\left(2 x \right)}}{32}\, dx = \frac{5 \int \cos^{4}{\left(2 x \right)}\, dx}{32}

            1. Rewrite the integrand:

              cos4(2x)=(cos(4x)2+12)2\cos^{4}{\left(2 x \right)} = \left(\frac{\cos{\left(4 x \right)}}{2} + \frac{1}{2}\right)^{2}

            2. Rewrite the integrand:

              (cos(4x)2+12)2=cos2(4x)4+cos(4x)2+14\left(\frac{\cos{\left(4 x \right)}}{2} + \frac{1}{2}\right)^{2} = \frac{\cos^{2}{\left(4 x \right)}}{4} + \frac{\cos{\left(4 x \right)}}{2} + \frac{1}{4}

            3. Integrate term-by-term:

              1. The integral of a constant times a function is the constant times the integral of the function:

                cos2(4x)4dx=cos2(4x)dx4\int \frac{\cos^{2}{\left(4 x \right)}}{4}\, dx = \frac{\int \cos^{2}{\left(4 x \right)}\, dx}{4}

                1. Rewrite the integrand:

                  cos2(4x)=cos(8x)2+12\cos^{2}{\left(4 x \right)} = \frac{\cos{\left(8 x \right)}}{2} + \frac{1}{2}

                2. Integrate term-by-term:

                  1. The integral of a constant times a function is the constant times the integral of the function:

                    cos(8x)2dx=cos(8x)dx2\int \frac{\cos{\left(8 x \right)}}{2}\, dx = \frac{\int \cos{\left(8 x \right)}\, dx}{2}

                    1. Let u=8xu = 8 x.

                      Then let du=8dxdu = 8 dx and substitute du8\frac{du}{8}:

                      cos(u)64du\int \frac{\cos{\left(u \right)}}{64}\, du

                      1. The integral of a constant times a function is the constant times the integral of the function:

                        cos(u)8du=cos(u)du8\int \frac{\cos{\left(u \right)}}{8}\, du = \frac{\int \cos{\left(u \right)}\, du}{8}

                        1. The integral of cosine is sine:

                          cos(u)du=sin(u)\int \cos{\left(u \right)}\, du = \sin{\left(u \right)}

                        So, the result is: sin(u)8\frac{\sin{\left(u \right)}}{8}

                      Now substitute uu back in:

                      sin(8x)8\frac{\sin{\left(8 x \right)}}{8}

                    So, the result is: sin(8x)16\frac{\sin{\left(8 x \right)}}{16}

                  1. The integral of a constant is the constant times the variable of integration:

                    12dx=x2\int \frac{1}{2}\, dx = \frac{x}{2}

                  The result is: x2+sin(8x)16\frac{x}{2} + \frac{\sin{\left(8 x \right)}}{16}

                So, the result is: x8+sin(8x)64\frac{x}{8} + \frac{\sin{\left(8 x \right)}}{64}

              1. The integral of a constant times a function is the constant times the integral of the function:

                cos(4x)2dx=cos(4x)dx2\int \frac{\cos{\left(4 x \right)}}{2}\, dx = \frac{\int \cos{\left(4 x \right)}\, dx}{2}

                1. Let u=4xu = 4 x.

                  Then let du=4dxdu = 4 dx and substitute du4\frac{du}{4}:

                  cos(u)16du\int \frac{\cos{\left(u \right)}}{16}\, du

                  1. The integral of a constant times a function is the constant times the integral of the function:

                    cos(u)4du=cos(u)du4\int \frac{\cos{\left(u \right)}}{4}\, du = \frac{\int \cos{\left(u \right)}\, du}{4}

                    1. The integral of cosine is sine:

                      cos(u)du=sin(u)\int \cos{\left(u \right)}\, du = \sin{\left(u \right)}

                    So, the result is: sin(u)4\frac{\sin{\left(u \right)}}{4}

                  Now substitute uu back in:

                  sin(4x)4\frac{\sin{\left(4 x \right)}}{4}

                So, the result is: sin(4x)8\frac{\sin{\left(4 x \right)}}{8}

              1. The integral of a constant is the constant times the variable of integration:

                14dx=x4\int \frac{1}{4}\, dx = \frac{x}{4}

              The result is: 3x8+sin(4x)8+sin(8x)64\frac{3 x}{8} + \frac{\sin{\left(4 x \right)}}{8} + \frac{\sin{\left(8 x \right)}}{64}

            So, the result is: 15x256+5sin(4x)256+5sin(8x)2048\frac{15 x}{256} + \frac{5 \sin{\left(4 x \right)}}{256} + \frac{5 \sin{\left(8 x \right)}}{2048}

          1. The integral of a constant times a function is the constant times the integral of the function:

            5cos3(2x)16dx=5cos3(2x)dx16\int \frac{5 \cos^{3}{\left(2 x \right)}}{16}\, dx = \frac{5 \int \cos^{3}{\left(2 x \right)}\, dx}{16}

            1. Rewrite the integrand:

              cos3(2x)=(1sin2(2x))cos(2x)\cos^{3}{\left(2 x \right)} = \left(1 - \sin^{2}{\left(2 x \right)}\right) \cos{\left(2 x \right)}

            2. Let u=sin(2x)u = \sin{\left(2 x \right)}.

              Then let du=2cos(2x)dxdu = 2 \cos{\left(2 x \right)} dx and substitute dudu:

              (12u22)du\int \left(\frac{1}{2} - \frac{u^{2}}{2}\right)\, du

              1. Integrate term-by-term:

                1. The integral of a constant is the constant times the variable of integration:

                  12du=u2\int \frac{1}{2}\, du = \frac{u}{2}

                1. The integral of a constant times a function is the constant times the integral of the function:

                  (u22)du=u2du2\int \left(- \frac{u^{2}}{2}\right)\, du = - \frac{\int u^{2}\, du}{2}

                  1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

                    u2du=u33\int u^{2}\, du = \frac{u^{3}}{3}

                  So, the result is: u36- \frac{u^{3}}{6}

                The result is: u36+u2- \frac{u^{3}}{6} + \frac{u}{2}

              Now substitute uu back in:

              sin3(2x)6+sin(2x)2- \frac{\sin^{3}{\left(2 x \right)}}{6} + \frac{\sin{\left(2 x \right)}}{2}

            So, the result is: 5sin3(2x)96+5sin(2x)32- \frac{5 \sin^{3}{\left(2 x \right)}}{96} + \frac{5 \sin{\left(2 x \right)}}{32}

          1. The integral of a constant times a function is the constant times the integral of the function:

            5cos2(2x)16dx=5cos2(2x)dx16\int \frac{5 \cos^{2}{\left(2 x \right)}}{16}\, dx = \frac{5 \int \cos^{2}{\left(2 x \right)}\, dx}{16}

            1. Rewrite the integrand:

              cos2(2x)=cos(4x)2+12\cos^{2}{\left(2 x \right)} = \frac{\cos{\left(4 x \right)}}{2} + \frac{1}{2}

            2. Integrate term-by-term:

              1. The integral of a constant times a function is the constant times the integral of the function:

                cos(4x)2dx=cos(4x)dx2\int \frac{\cos{\left(4 x \right)}}{2}\, dx = \frac{\int \cos{\left(4 x \right)}\, dx}{2}

                1. Let u=4xu = 4 x.

                  Then let du=4dxdu = 4 dx and substitute du4\frac{du}{4}:

                  cos(u)16du\int \frac{\cos{\left(u \right)}}{16}\, du

                  1. The integral of a constant times a function is the constant times the integral of the function:

                    cos(u)4du=cos(u)du4\int \frac{\cos{\left(u \right)}}{4}\, du = \frac{\int \cos{\left(u \right)}\, du}{4}

                    1. The integral of cosine is sine:

                      cos(u)du=sin(u)\int \cos{\left(u \right)}\, du = \sin{\left(u \right)}

                    So, the result is: sin(u)4\frac{\sin{\left(u \right)}}{4}

                  Now substitute uu back in:

                  sin(4x)4\frac{\sin{\left(4 x \right)}}{4}

                So, the result is: sin(4x)8\frac{\sin{\left(4 x \right)}}{8}

              1. The integral of a constant is the constant times the variable of integration:

                12dx=x2\int \frac{1}{2}\, dx = \frac{x}{2}

              The result is: x2+sin(4x)8\frac{x}{2} + \frac{\sin{\left(4 x \right)}}{8}

            So, the result is: 5x32+5sin(4x)128\frac{5 x}{32} + \frac{5 \sin{\left(4 x \right)}}{128}

          1. The integral of a constant times a function is the constant times the integral of the function:

            5cos(2x)32dx=5cos(2x)dx32\int \frac{5 \cos{\left(2 x \right)}}{32}\, dx = \frac{5 \int \cos{\left(2 x \right)}\, dx}{32}

            1. Let u=2xu = 2 x.

              Then let du=2dxdu = 2 dx and substitute du2\frac{du}{2}:

              cos(u)4du\int \frac{\cos{\left(u \right)}}{4}\, du

              1. The integral of a constant times a function is the constant times the integral of the function:

                cos(u)2du=cos(u)du2\int \frac{\cos{\left(u \right)}}{2}\, du = \frac{\int \cos{\left(u \right)}\, du}{2}

                1. The integral of cosine is sine:

                  cos(u)du=sin(u)\int \cos{\left(u \right)}\, du = \sin{\left(u \right)}

                So, the result is: sin(u)2\frac{\sin{\left(u \right)}}{2}

              Now substitute uu back in:

              sin(2x)2\frac{\sin{\left(2 x \right)}}{2}

            So, the result is: 5sin(2x)64\frac{5 \sin{\left(2 x \right)}}{64}

          1. The integral of a constant is the constant times the variable of integration:

            132dx=x32\int \frac{1}{32}\, dx = \frac{x}{32}

          The result is: 63x256+sin5(2x)320sin3(2x)16+sin(2x)4+15sin(4x)256+5sin(8x)2048\frac{63 x}{256} + \frac{\sin^{5}{\left(2 x \right)}}{320} - \frac{\sin^{3}{\left(2 x \right)}}{16} + \frac{\sin{\left(2 x \right)}}{4} + \frac{15 \sin{\left(4 x \right)}}{256} + \frac{5 \sin{\left(8 x \right)}}{2048}

        Method #2

        1. Rewrite the integrand:

          (cos(2x)2+12)5=cos5(2x)32+5cos4(2x)32+5cos3(2x)16+5cos2(2x)16+5cos(2x)32+132\left(\frac{\cos{\left(2 x \right)}}{2} + \frac{1}{2}\right)^{5} = \frac{\cos^{5}{\left(2 x \right)}}{32} + \frac{5 \cos^{4}{\left(2 x \right)}}{32} + \frac{5 \cos^{3}{\left(2 x \right)}}{16} + \frac{5 \cos^{2}{\left(2 x \right)}}{16} + \frac{5 \cos{\left(2 x \right)}}{32} + \frac{1}{32}

        2. Integrate term-by-term:

          1. The integral of a constant times a function is the constant times the integral of the function:

            cos5(2x)32dx=cos5(2x)dx32\int \frac{\cos^{5}{\left(2 x \right)}}{32}\, dx = \frac{\int \cos^{5}{\left(2 x \right)}\, dx}{32}

            1. Rewrite the integrand:

              cos5(2x)=(1sin2(2x))2cos(2x)\cos^{5}{\left(2 x \right)} = \left(1 - \sin^{2}{\left(2 x \right)}\right)^{2} \cos{\left(2 x \right)}

            2. Let u=2xu = 2 x.

              Then let du=2dxdu = 2 dx and substitute dudu:

              (sin4(u)cos(u)2sin2(u)cos(u)+cos(u)2)du\int \left(\frac{\sin^{4}{\left(u \right)} \cos{\left(u \right)}}{2} - \sin^{2}{\left(u \right)} \cos{\left(u \right)} + \frac{\cos{\left(u \right)}}{2}\right)\, du

              1. Integrate term-by-term:

                1. The integral of a constant times a function is the constant times the integral of the function:

                  sin4(u)cos(u)2du=sin4(u)cos(u)du2\int \frac{\sin^{4}{\left(u \right)} \cos{\left(u \right)}}{2}\, du = \frac{\int \sin^{4}{\left(u \right)} \cos{\left(u \right)}\, du}{2}

                  1. Let u=sin(u)u = \sin{\left(u \right)}.

                    Then let du=cos(u)dudu = \cos{\left(u \right)} du and substitute dudu:

                    u4du\int u^{4}\, du

                    1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

                      u4du=u55\int u^{4}\, du = \frac{u^{5}}{5}

                    Now substitute uu back in:

                    sin5(u)5\frac{\sin^{5}{\left(u \right)}}{5}

                  So, the result is: sin5(u)10\frac{\sin^{5}{\left(u \right)}}{10}

                1. The integral of a constant times a function is the constant times the integral of the function:

                  (sin2(u)cos(u))du=sin2(u)cos(u)du\int \left(- \sin^{2}{\left(u \right)} \cos{\left(u \right)}\right)\, du = - \int \sin^{2}{\left(u \right)} \cos{\left(u \right)}\, du

                  1. Let u=sin(u)u = \sin{\left(u \right)}.

                    Then let du=cos(u)dudu = \cos{\left(u \right)} du and substitute dudu:

                    u2du\int u^{2}\, du

                    1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

                      u2du=u33\int u^{2}\, du = \frac{u^{3}}{3}

                    Now substitute uu back in:

                    sin3(u)3\frac{\sin^{3}{\left(u \right)}}{3}

                  So, the result is: sin3(u)3- \frac{\sin^{3}{\left(u \right)}}{3}

                1. The integral of a constant times a function is the constant times the integral of the function:

                  cos(u)2du=cos(u)du2\int \frac{\cos{\left(u \right)}}{2}\, du = \frac{\int \cos{\left(u \right)}\, du}{2}

                  1. The integral of cosine is sine:

                    cos(u)du=sin(u)\int \cos{\left(u \right)}\, du = \sin{\left(u \right)}

                  So, the result is: sin(u)2\frac{\sin{\left(u \right)}}{2}

                The result is: sin5(u)10sin3(u)3+sin(u)2\frac{\sin^{5}{\left(u \right)}}{10} - \frac{\sin^{3}{\left(u \right)}}{3} + \frac{\sin{\left(u \right)}}{2}

              Now substitute uu back in:

              sin5(2x)10sin3(2x)3+sin(2x)2\frac{\sin^{5}{\left(2 x \right)}}{10} - \frac{\sin^{3}{\left(2 x \right)}}{3} + \frac{\sin{\left(2 x \right)}}{2}

            So, the result is: sin5(2x)320sin3(2x)96+sin(2x)64\frac{\sin^{5}{\left(2 x \right)}}{320} - \frac{\sin^{3}{\left(2 x \right)}}{96} + \frac{\sin{\left(2 x \right)}}{64}

          1. The integral of a constant times a function is the constant times the integral of the function:

            5cos4(2x)32dx=5cos4(2x)dx32\int \frac{5 \cos^{4}{\left(2 x \right)}}{32}\, dx = \frac{5 \int \cos^{4}{\left(2 x \right)}\, dx}{32}

            1. Rewrite the integrand:

              cos4(2x)=(cos(4x)2+12)2\cos^{4}{\left(2 x \right)} = \left(\frac{\cos{\left(4 x \right)}}{2} + \frac{1}{2}\right)^{2}

            2. Rewrite the integrand:

              (cos(4x)2+12)2=cos2(4x)4+cos(4x)2+14\left(\frac{\cos{\left(4 x \right)}}{2} + \frac{1}{2}\right)^{2} = \frac{\cos^{2}{\left(4 x \right)}}{4} + \frac{\cos{\left(4 x \right)}}{2} + \frac{1}{4}

            3. Integrate term-by-term:

              1. The integral of a constant times a function is the constant times the integral of the function:

                cos2(4x)4dx=cos2(4x)dx4\int \frac{\cos^{2}{\left(4 x \right)}}{4}\, dx = \frac{\int \cos^{2}{\left(4 x \right)}\, dx}{4}

                1. Rewrite the integrand:

                  cos2(4x)=cos(8x)2+12\cos^{2}{\left(4 x \right)} = \frac{\cos{\left(8 x \right)}}{2} + \frac{1}{2}

                2. Integrate term-by-term:

                  1. The integral of a constant times a function is the constant times the integral of the function:

                    cos(8x)2dx=cos(8x)dx2\int \frac{\cos{\left(8 x \right)}}{2}\, dx = \frac{\int \cos{\left(8 x \right)}\, dx}{2}

                    1. Let u=8xu = 8 x.

                      Then let du=8dxdu = 8 dx and substitute du8\frac{du}{8}:

                      cos(u)64du\int \frac{\cos{\left(u \right)}}{64}\, du

                      1. The integral of a constant times a function is the constant times the integral of the function:

                        cos(u)8du=cos(u)du8\int \frac{\cos{\left(u \right)}}{8}\, du = \frac{\int \cos{\left(u \right)}\, du}{8}

                        1. The integral of cosine is sine:

                          cos(u)du=sin(u)\int \cos{\left(u \right)}\, du = \sin{\left(u \right)}

                        So, the result is: sin(u)8\frac{\sin{\left(u \right)}}{8}

                      Now substitute uu back in:

                      sin(8x)8\frac{\sin{\left(8 x \right)}}{8}

                    So, the result is: sin(8x)16\frac{\sin{\left(8 x \right)}}{16}

                  1. The integral of a constant is the constant times the variable of integration:

                    12dx=x2\int \frac{1}{2}\, dx = \frac{x}{2}

                  The result is: x2+sin(8x)16\frac{x}{2} + \frac{\sin{\left(8 x \right)}}{16}

                So, the result is: x8+sin(8x)64\frac{x}{8} + \frac{\sin{\left(8 x \right)}}{64}

              1. The integral of a constant times a function is the constant times the integral of the function:

                cos(4x)2dx=cos(4x)dx2\int \frac{\cos{\left(4 x \right)}}{2}\, dx = \frac{\int \cos{\left(4 x \right)}\, dx}{2}

                1. Let u=4xu = 4 x.

                  Then let du=4dxdu = 4 dx and substitute du4\frac{du}{4}:

                  cos(u)16du\int \frac{\cos{\left(u \right)}}{16}\, du

                  1. The integral of a constant times a function is the constant times the integral of the function:

                    cos(u)4du=cos(u)du4\int \frac{\cos{\left(u \right)}}{4}\, du = \frac{\int \cos{\left(u \right)}\, du}{4}

                    1. The integral of cosine is sine:

                      cos(u)du=sin(u)\int \cos{\left(u \right)}\, du = \sin{\left(u \right)}

                    So, the result is: sin(u)4\frac{\sin{\left(u \right)}}{4}

                  Now substitute uu back in:

                  sin(4x)4\frac{\sin{\left(4 x \right)}}{4}

                So, the result is: sin(4x)8\frac{\sin{\left(4 x \right)}}{8}

              1. The integral of a constant is the constant times the variable of integration:

                14dx=x4\int \frac{1}{4}\, dx = \frac{x}{4}

              The result is: 3x8+sin(4x)8+sin(8x)64\frac{3 x}{8} + \frac{\sin{\left(4 x \right)}}{8} + \frac{\sin{\left(8 x \right)}}{64}

            So, the result is: 15x256+5sin(4x)256+5sin(8x)2048\frac{15 x}{256} + \frac{5 \sin{\left(4 x \right)}}{256} + \frac{5 \sin{\left(8 x \right)}}{2048}

          1. The integral of a constant times a function is the constant times the integral of the function:

            5cos3(2x)16dx=5cos3(2x)dx16\int \frac{5 \cos^{3}{\left(2 x \right)}}{16}\, dx = \frac{5 \int \cos^{3}{\left(2 x \right)}\, dx}{16}

            1. Rewrite the integrand:

              cos3(2x)=(1sin2(2x))cos(2x)\cos^{3}{\left(2 x \right)} = \left(1 - \sin^{2}{\left(2 x \right)}\right) \cos{\left(2 x \right)}

            2. Let u=sin(2x)u = \sin{\left(2 x \right)}.

              Then let du=2cos(2x)dxdu = 2 \cos{\left(2 x \right)} dx and substitute dudu:

              (12u22)du\int \left(\frac{1}{2} - \frac{u^{2}}{2}\right)\, du

              1. Integrate term-by-term:

                1. The integral of a constant is the constant times the variable of integration:

                  12du=u2\int \frac{1}{2}\, du = \frac{u}{2}

                1. The integral of a constant times a function is the constant times the integral of the function:

                  (u22)du=u2du2\int \left(- \frac{u^{2}}{2}\right)\, du = - \frac{\int u^{2}\, du}{2}

                  1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

                    u2du=u33\int u^{2}\, du = \frac{u^{3}}{3}

                  So, the result is: u36- \frac{u^{3}}{6}

                The result is: u36+u2- \frac{u^{3}}{6} + \frac{u}{2}

              Now substitute uu back in:

              sin3(2x)6+sin(2x)2- \frac{\sin^{3}{\left(2 x \right)}}{6} + \frac{\sin{\left(2 x \right)}}{2}

            So, the result is: 5sin3(2x)96+5sin(2x)32- \frac{5 \sin^{3}{\left(2 x \right)}}{96} + \frac{5 \sin{\left(2 x \right)}}{32}

          1. The integral of a constant times a function is the constant times the integral of the function:

            5cos2(2x)16dx=5cos2(2x)dx16\int \frac{5 \cos^{2}{\left(2 x \right)}}{16}\, dx = \frac{5 \int \cos^{2}{\left(2 x \right)}\, dx}{16}

            1. Rewrite the integrand:

              cos2(2x)=cos(4x)2+12\cos^{2}{\left(2 x \right)} = \frac{\cos{\left(4 x \right)}}{2} + \frac{1}{2}

            2. Integrate term-by-term:

              1. The integral of a constant times a function is the constant times the integral of the function:

                cos(4x)2dx=cos(4x)dx2\int \frac{\cos{\left(4 x \right)}}{2}\, dx = \frac{\int \cos{\left(4 x \right)}\, dx}{2}

                1. Let u=4xu = 4 x.

                  Then let du=4dxdu = 4 dx and substitute du4\frac{du}{4}:

                  cos(u)16du\int \frac{\cos{\left(u \right)}}{16}\, du

                  1. The integral of a constant times a function is the constant times the integral of the function:

                    cos(u)4du=cos(u)du4\int \frac{\cos{\left(u \right)}}{4}\, du = \frac{\int \cos{\left(u \right)}\, du}{4}

                    1. The integral of cosine is sine:

                      cos(u)du=sin(u)\int \cos{\left(u \right)}\, du = \sin{\left(u \right)}

                    So, the result is: sin(u)4\frac{\sin{\left(u \right)}}{4}

                  Now substitute uu back in:

                  sin(4x)4\frac{\sin{\left(4 x \right)}}{4}

                So, the result is: sin(4x)8\frac{\sin{\left(4 x \right)}}{8}

              1. The integral of a constant is the constant times the variable of integration:

                12dx=x2\int \frac{1}{2}\, dx = \frac{x}{2}

              The result is: x2+sin(4x)8\frac{x}{2} + \frac{\sin{\left(4 x \right)}}{8}

            So, the result is: 5x32+5sin(4x)128\frac{5 x}{32} + \frac{5 \sin{\left(4 x \right)}}{128}

          1. The integral of a constant times a function is the constant times the integral of the function:

            5cos(2x)32dx=5cos(2x)dx32\int \frac{5 \cos{\left(2 x \right)}}{32}\, dx = \frac{5 \int \cos{\left(2 x \right)}\, dx}{32}

            1. Let u=2xu = 2 x.

              Then let du=2dxdu = 2 dx and substitute du2\frac{du}{2}:

              cos(u)4du\int \frac{\cos{\left(u \right)}}{4}\, du

              1. The integral of a constant times a function is the constant times the integral of the function:

                cos(u)2du=cos(u)du2\int \frac{\cos{\left(u \right)}}{2}\, du = \frac{\int \cos{\left(u \right)}\, du}{2}

                1. The integral of cosine is sine:

                  cos(u)du=sin(u)\int \cos{\left(u \right)}\, du = \sin{\left(u \right)}

                So, the result is: sin(u)2\frac{\sin{\left(u \right)}}{2}

              Now substitute uu back in:

              sin(2x)2\frac{\sin{\left(2 x \right)}}{2}

            So, the result is: 5sin(2x)64\frac{5 \sin{\left(2 x \right)}}{64}

          1. The integral of a constant is the constant times the variable of integration:

            132dx=x32\int \frac{1}{32}\, dx = \frac{x}{32}

          The result is: 63x256+sin5(2x)320sin3(2x)16+sin(2x)4+15sin(4x)256+5sin(8x)2048\frac{63 x}{256} + \frac{\sin^{5}{\left(2 x \right)}}{320} - \frac{\sin^{3}{\left(2 x \right)}}{16} + \frac{\sin{\left(2 x \right)}}{4} + \frac{15 \sin{\left(4 x \right)}}{256} + \frac{5 \sin{\left(8 x \right)}}{2048}

      So, the result is: 63x+4sin5(2x)516sin3(2x)+64sin(2x)+15sin(4x)+5sin(8x)863 x + \frac{4 \sin^{5}{\left(2 x \right)}}{5} - 16 \sin^{3}{\left(2 x \right)} + 64 \sin{\left(2 x \right)} + 15 \sin{\left(4 x \right)} + \frac{5 \sin{\left(8 x \right)}}{8}

    1. The integral of a constant times a function is the constant times the integral of the function:

      (640cos8(x))dx=640cos8(x)dx\int \left(- 640 \cos^{8}{\left(x \right)}\right)\, dx = - 640 \int \cos^{8}{\left(x \right)}\, dx

      1. Rewrite the integrand:

        cos8(x)=(cos(2x)2+12)4\cos^{8}{\left(x \right)} = \left(\frac{\cos{\left(2 x \right)}}{2} + \frac{1}{2}\right)^{4}

      2. Rewrite the integrand:

        (cos(2x)2+12)4=cos4(2x)16+cos3(2x)4+3cos2(2x)8+cos(2x)4+116\left(\frac{\cos{\left(2 x \right)}}{2} + \frac{1}{2}\right)^{4} = \frac{\cos^{4}{\left(2 x \right)}}{16} + \frac{\cos^{3}{\left(2 x \right)}}{4} + \frac{3 \cos^{2}{\left(2 x \right)}}{8} + \frac{\cos{\left(2 x \right)}}{4} + \frac{1}{16}

      3. Integrate term-by-term:

        1. The integral of a constant times a function is the constant times the integral of the function:

          cos4(2x)16dx=cos4(2x)dx16\int \frac{\cos^{4}{\left(2 x \right)}}{16}\, dx = \frac{\int \cos^{4}{\left(2 x \right)}\, dx}{16}

          1. Rewrite the integrand:

            cos4(2x)=(cos(4x)2+12)2\cos^{4}{\left(2 x \right)} = \left(\frac{\cos{\left(4 x \right)}}{2} + \frac{1}{2}\right)^{2}

          2. Rewrite the integrand:

            (cos(4x)2+12)2=cos2(4x)4+cos(4x)2+14\left(\frac{\cos{\left(4 x \right)}}{2} + \frac{1}{2}\right)^{2} = \frac{\cos^{2}{\left(4 x \right)}}{4} + \frac{\cos{\left(4 x \right)}}{2} + \frac{1}{4}

          3. Integrate term-by-term:

            1. The integral of a constant times a function is the constant times the integral of the function:

              cos2(4x)4dx=cos2(4x)dx4\int \frac{\cos^{2}{\left(4 x \right)}}{4}\, dx = \frac{\int \cos^{2}{\left(4 x \right)}\, dx}{4}

              1. Rewrite the integrand:

                cos2(4x)=cos(8x)2+12\cos^{2}{\left(4 x \right)} = \frac{\cos{\left(8 x \right)}}{2} + \frac{1}{2}

              2. Integrate term-by-term:

                1. The integral of a constant times a function is the constant times the integral of the function:

                  cos(8x)2dx=cos(8x)dx2\int \frac{\cos{\left(8 x \right)}}{2}\, dx = \frac{\int \cos{\left(8 x \right)}\, dx}{2}

                  1. Let u=8xu = 8 x.

                    Then let du=8dxdu = 8 dx and substitute du8\frac{du}{8}:

                    cos(u)64du\int \frac{\cos{\left(u \right)}}{64}\, du

                    1. The integral of a constant times a function is the constant times the integral of the function:

                      cos(u)8du=cos(u)du8\int \frac{\cos{\left(u \right)}}{8}\, du = \frac{\int \cos{\left(u \right)}\, du}{8}

                      1. The integral of cosine is sine:

                        cos(u)du=sin(u)\int \cos{\left(u \right)}\, du = \sin{\left(u \right)}

                      So, the result is: sin(u)8\frac{\sin{\left(u \right)}}{8}

                    Now substitute uu back in:

                    sin(8x)8\frac{\sin{\left(8 x \right)}}{8}

                  So, the result is: sin(8x)16\frac{\sin{\left(8 x \right)}}{16}

                1. The integral of a constant is the constant times the variable of integration:

                  12dx=x2\int \frac{1}{2}\, dx = \frac{x}{2}

                The result is: x2+sin(8x)16\frac{x}{2} + \frac{\sin{\left(8 x \right)}}{16}

              So, the result is: x8+sin(8x)64\frac{x}{8} + \frac{\sin{\left(8 x \right)}}{64}

            1. The integral of a constant times a function is the constant times the integral of the function:

              cos(4x)2dx=cos(4x)dx2\int \frac{\cos{\left(4 x \right)}}{2}\, dx = \frac{\int \cos{\left(4 x \right)}\, dx}{2}

              1. Let u=4xu = 4 x.

                Then let du=4dxdu = 4 dx and substitute du4\frac{du}{4}:

                cos(u)16du\int \frac{\cos{\left(u \right)}}{16}\, du

                1. The integral of a constant times a function is the constant times the integral of the function:

                  cos(u)4du=cos(u)du4\int \frac{\cos{\left(u \right)}}{4}\, du = \frac{\int \cos{\left(u \right)}\, du}{4}

                  1. The integral of cosine is sine:

                    cos(u)du=sin(u)\int \cos{\left(u \right)}\, du = \sin{\left(u \right)}

                  So, the result is: sin(u)4\frac{\sin{\left(u \right)}}{4}

                Now substitute uu back in:

                sin(4x)4\frac{\sin{\left(4 x \right)}}{4}

              So, the result is: sin(4x)8\frac{\sin{\left(4 x \right)}}{8}

            1. The integral of a constant is the constant times the variable of integration:

              14dx=x4\int \frac{1}{4}\, dx = \frac{x}{4}

            The result is: 3x8+sin(4x)8+sin(8x)64\frac{3 x}{8} + \frac{\sin{\left(4 x \right)}}{8} + \frac{\sin{\left(8 x \right)}}{64}

          So, the result is: 3x128+sin(4x)128+sin(8x)1024\frac{3 x}{128} + \frac{\sin{\left(4 x \right)}}{128} + \frac{\sin{\left(8 x \right)}}{1024}

        1. The integral of a constant times a function is the constant times the integral of the function:

          cos3(2x)4dx=cos3(2x)dx4\int \frac{\cos^{3}{\left(2 x \right)}}{4}\, dx = \frac{\int \cos^{3}{\left(2 x \right)}\, dx}{4}

          1. Rewrite the integrand:

            cos3(2x)=(1sin2(2x))cos(2x)\cos^{3}{\left(2 x \right)} = \left(1 - \sin^{2}{\left(2 x \right)}\right) \cos{\left(2 x \right)}

          2. Let u=sin(2x)u = \sin{\left(2 x \right)}.

            Then let du=2cos(2x)dxdu = 2 \cos{\left(2 x \right)} dx and substitute dudu:

            (12u22)du\int \left(\frac{1}{2} - \frac{u^{2}}{2}\right)\, du

            1. Integrate term-by-term:

              1. The integral of a constant is the constant times the variable of integration:

                12du=u2\int \frac{1}{2}\, du = \frac{u}{2}

              1. The integral of a constant times a function is the constant times the integral of the function:

                (u22)du=u2du2\int \left(- \frac{u^{2}}{2}\right)\, du = - \frac{\int u^{2}\, du}{2}

                1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

                  u2du=u33\int u^{2}\, du = \frac{u^{3}}{3}

                So, the result is: u36- \frac{u^{3}}{6}

              The result is: u36+u2- \frac{u^{3}}{6} + \frac{u}{2}

            Now substitute uu back in:

            sin3(2x)6+sin(2x)2- \frac{\sin^{3}{\left(2 x \right)}}{6} + \frac{\sin{\left(2 x \right)}}{2}

          So, the result is: sin3(2x)24+sin(2x)8- \frac{\sin^{3}{\left(2 x \right)}}{24} + \frac{\sin{\left(2 x \right)}}{8}

        1. The integral of a constant times a function is the constant times the integral of the function:

          3cos2(2x)8dx=3cos2(2x)dx8\int \frac{3 \cos^{2}{\left(2 x \right)}}{8}\, dx = \frac{3 \int \cos^{2}{\left(2 x \right)}\, dx}{8}

          1. Rewrite the integrand:

            cos2(2x)=cos(4x)2+12\cos^{2}{\left(2 x \right)} = \frac{\cos{\left(4 x \right)}}{2} + \frac{1}{2}

          2. Integrate term-by-term:

            1. The integral of a constant times a function is the constant times the integral of the function:

              cos(4x)2dx=cos(4x)dx2\int \frac{\cos{\left(4 x \right)}}{2}\, dx = \frac{\int \cos{\left(4 x \right)}\, dx}{2}

              1. Let u=4xu = 4 x.

                Then let du=4dxdu = 4 dx and substitute du4\frac{du}{4}:

                cos(u)16du\int \frac{\cos{\left(u \right)}}{16}\, du

                1. The integral of a constant times a function is the constant times the integral of the function:

                  cos(u)4du=cos(u)du4\int \frac{\cos{\left(u \right)}}{4}\, du = \frac{\int \cos{\left(u \right)}\, du}{4}

                  1. The integral of cosine is sine:

                    cos(u)du=sin(u)\int \cos{\left(u \right)}\, du = \sin{\left(u \right)}

                  So, the result is: sin(u)4\frac{\sin{\left(u \right)}}{4}

                Now substitute uu back in:

                sin(4x)4\frac{\sin{\left(4 x \right)}}{4}

              So, the result is: sin(4x)8\frac{\sin{\left(4 x \right)}}{8}

            1. The integral of a constant is the constant times the variable of integration:

              12dx=x2\int \frac{1}{2}\, dx = \frac{x}{2}

            The result is: x2+sin(4x)8\frac{x}{2} + \frac{\sin{\left(4 x \right)}}{8}

          So, the result is: 3x16+3sin(4x)64\frac{3 x}{16} + \frac{3 \sin{\left(4 x \right)}}{64}

        1. The integral of a constant times a function is the constant times the integral of the function:

          cos(2x)4dx=cos(2x)dx4\int \frac{\cos{\left(2 x \right)}}{4}\, dx = \frac{\int \cos{\left(2 x \right)}\, dx}{4}

          1. Let u=2xu = 2 x.

            Then let du=2dxdu = 2 dx and substitute du2\frac{du}{2}:

            cos(u)4du\int \frac{\cos{\left(u \right)}}{4}\, du

            1. The integral of a constant times a function is the constant times the integral of the function:

              cos(u)2du=cos(u)du2\int \frac{\cos{\left(u \right)}}{2}\, du = \frac{\int \cos{\left(u \right)}\, du}{2}

              1. The integral of cosine is sine:

                cos(u)du=sin(u)\int \cos{\left(u \right)}\, du = \sin{\left(u \right)}

              So, the result is: sin(u)2\frac{\sin{\left(u \right)}}{2}

            Now substitute uu back in:

            sin(2x)2\frac{\sin{\left(2 x \right)}}{2}

          So, the result is: sin(2x)8\frac{\sin{\left(2 x \right)}}{8}

        1. The integral of a constant is the constant times the variable of integration:

          116dx=x16\int \frac{1}{16}\, dx = \frac{x}{16}

        The result is: 35x128sin3(2x)24+sin(2x)4+7sin(4x)128+sin(8x)1024\frac{35 x}{128} - \frac{\sin^{3}{\left(2 x \right)}}{24} + \frac{\sin{\left(2 x \right)}}{4} + \frac{7 \sin{\left(4 x \right)}}{128} + \frac{\sin{\left(8 x \right)}}{1024}

      So, the result is: 175x+80sin3(2x)3160sin(2x)35sin(4x)5sin(8x)8- 175 x + \frac{80 \sin^{3}{\left(2 x \right)}}{3} - 160 \sin{\left(2 x \right)} - 35 \sin{\left(4 x \right)} - \frac{5 \sin{\left(8 x \right)}}{8}

    1. The integral of a constant times a function is the constant times the integral of the function:

      560cos6(x)dx=560cos6(x)dx\int 560 \cos^{6}{\left(x \right)}\, dx = 560 \int \cos^{6}{\left(x \right)}\, dx

      1. Rewrite the integrand:

        cos6(x)=(cos(2x)2+12)3\cos^{6}{\left(x \right)} = \left(\frac{\cos{\left(2 x \right)}}{2} + \frac{1}{2}\right)^{3}

      2. Rewrite the integrand:

        (cos(2x)2+12)3=cos3(2x)8+3cos2(2x)8+3cos(2x)8+18\left(\frac{\cos{\left(2 x \right)}}{2} + \frac{1}{2}\right)^{3} = \frac{\cos^{3}{\left(2 x \right)}}{8} + \frac{3 \cos^{2}{\left(2 x \right)}}{8} + \frac{3 \cos{\left(2 x \right)}}{8} + \frac{1}{8}

      3. Integrate term-by-term:

        1. The integral of a constant times a function is the constant times the integral of the function:

          cos3(2x)8dx=cos3(2x)dx8\int \frac{\cos^{3}{\left(2 x \right)}}{8}\, dx = \frac{\int \cos^{3}{\left(2 x \right)}\, dx}{8}

          1. Rewrite the integrand:

            cos3(2x)=(1sin2(2x))cos(2x)\cos^{3}{\left(2 x \right)} = \left(1 - \sin^{2}{\left(2 x \right)}\right) \cos{\left(2 x \right)}

          2. Let u=sin(2x)u = \sin{\left(2 x \right)}.

            Then let du=2cos(2x)dxdu = 2 \cos{\left(2 x \right)} dx and substitute dudu:

            (12u22)du\int \left(\frac{1}{2} - \frac{u^{2}}{2}\right)\, du

            1. Integrate term-by-term:

              1. The integral of a constant is the constant times the variable of integration:

                12du=u2\int \frac{1}{2}\, du = \frac{u}{2}

              1. The integral of a constant times a function is the constant times the integral of the function:

                (u22)du=u2du2\int \left(- \frac{u^{2}}{2}\right)\, du = - \frac{\int u^{2}\, du}{2}

                1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

                  u2du=u33\int u^{2}\, du = \frac{u^{3}}{3}

                So, the result is: u36- \frac{u^{3}}{6}

              The result is: u36+u2- \frac{u^{3}}{6} + \frac{u}{2}

            Now substitute uu back in:

            sin3(2x)6+sin(2x)2- \frac{\sin^{3}{\left(2 x \right)}}{6} + \frac{\sin{\left(2 x \right)}}{2}

          So, the result is: sin3(2x)48+sin(2x)16- \frac{\sin^{3}{\left(2 x \right)}}{48} + \frac{\sin{\left(2 x \right)}}{16}

        1. The integral of a constant times a function is the constant times the integral of the function:

          3cos2(2x)8dx=3cos2(2x)dx8\int \frac{3 \cos^{2}{\left(2 x \right)}}{8}\, dx = \frac{3 \int \cos^{2}{\left(2 x \right)}\, dx}{8}

          1. Rewrite the integrand:

            cos2(2x)=cos(4x)2+12\cos^{2}{\left(2 x \right)} = \frac{\cos{\left(4 x \right)}}{2} + \frac{1}{2}

          2. Integrate term-by-term:

            1. The integral of a constant times a function is the constant times the integral of the function:

              cos(4x)2dx=cos(4x)dx2\int \frac{\cos{\left(4 x \right)}}{2}\, dx = \frac{\int \cos{\left(4 x \right)}\, dx}{2}

              1. Let u=4xu = 4 x.

                Then let du=4dxdu = 4 dx and substitute du4\frac{du}{4}:

                cos(u)16du\int \frac{\cos{\left(u \right)}}{16}\, du

                1. The integral of a constant times a function is the constant times the integral of the function:

                  cos(u)4du=cos(u)du4\int \frac{\cos{\left(u \right)}}{4}\, du = \frac{\int \cos{\left(u \right)}\, du}{4}

                  1. The integral of cosine is sine:

                    cos(u)du=sin(u)\int \cos{\left(u \right)}\, du = \sin{\left(u \right)}

                  So, the result is: sin(u)4\frac{\sin{\left(u \right)}}{4}

                Now substitute uu back in:

                sin(4x)4\frac{\sin{\left(4 x \right)}}{4}

              So, the result is: sin(4x)8\frac{\sin{\left(4 x \right)}}{8}

            1. The integral of a constant is the constant times the variable of integration:

              12dx=x2\int \frac{1}{2}\, dx = \frac{x}{2}

            The result is: x2+sin(4x)8\frac{x}{2} + \frac{\sin{\left(4 x \right)}}{8}

          So, the result is: 3x16+3sin(4x)64\frac{3 x}{16} + \frac{3 \sin{\left(4 x \right)}}{64}

        1. The integral of a constant times a function is the constant times the integral of the function:

          3cos(2x)8dx=3cos(2x)dx8\int \frac{3 \cos{\left(2 x \right)}}{8}\, dx = \frac{3 \int \cos{\left(2 x \right)}\, dx}{8}

          1. Let u=2xu = 2 x.

            Then let du=2dxdu = 2 dx and substitute du2\frac{du}{2}:

            cos(u)4du\int \frac{\cos{\left(u \right)}}{4}\, du

            1. The integral of a constant times a function is the constant times the integral of the function:

              cos(u)2du=cos(u)du2\int \frac{\cos{\left(u \right)}}{2}\, du = \frac{\int \cos{\left(u \right)}\, du}{2}

              1. The integral of cosine is sine:

                cos(u)du=sin(u)\int \cos{\left(u \right)}\, du = \sin{\left(u \right)}

              So, the result is: sin(u)2\frac{\sin{\left(u \right)}}{2}

            Now substitute uu back in:

            sin(2x)2\frac{\sin{\left(2 x \right)}}{2}

          So, the result is: 3sin(2x)16\frac{3 \sin{\left(2 x \right)}}{16}

        1. The integral of a constant is the constant times the variable of integration:

          18dx=x8\int \frac{1}{8}\, dx = \frac{x}{8}

        The result is: 5x16sin3(2x)48+sin(2x)4+3sin(4x)64\frac{5 x}{16} - \frac{\sin^{3}{\left(2 x \right)}}{48} + \frac{\sin{\left(2 x \right)}}{4} + \frac{3 \sin{\left(4 x \right)}}{64}

      So, the result is: 175x35sin3(2x)3+140sin(2x)+105sin(4x)4175 x - \frac{35 \sin^{3}{\left(2 x \right)}}{3} + 140 \sin{\left(2 x \right)} + \frac{105 \sin{\left(4 x \right)}}{4}

    1. The integral of a constant times a function is the constant times the integral of the function:

      (196cos4(x))dx=196cos4(x)dx\int \left(- 196 \cos^{4}{\left(x \right)}\right)\, dx = - 196 \int \cos^{4}{\left(x \right)}\, dx

      1. Rewrite the integrand:

        cos4(x)=(cos(2x)2+12)2\cos^{4}{\left(x \right)} = \left(\frac{\cos{\left(2 x \right)}}{2} + \frac{1}{2}\right)^{2}

      2. Rewrite the integrand:

        (cos(2x)2+12)2=cos2(2x)4+cos(2x)2+14\left(\frac{\cos{\left(2 x \right)}}{2} + \frac{1}{2}\right)^{2} = \frac{\cos^{2}{\left(2 x \right)}}{4} + \frac{\cos{\left(2 x \right)}}{2} + \frac{1}{4}

      3. Integrate term-by-term:

        1. The integral of a constant times a function is the constant times the integral of the function:

          cos2(2x)4dx=cos2(2x)dx4\int \frac{\cos^{2}{\left(2 x \right)}}{4}\, dx = \frac{\int \cos^{2}{\left(2 x \right)}\, dx}{4}

          1. Rewrite the integrand:

            cos2(2x)=cos(4x)2+12\cos^{2}{\left(2 x \right)} = \frac{\cos{\left(4 x \right)}}{2} + \frac{1}{2}

          2. Integrate term-by-term:

            1. The integral of a constant times a function is the constant times the integral of the function:

              cos(4x)2dx=cos(4x)dx2\int \frac{\cos{\left(4 x \right)}}{2}\, dx = \frac{\int \cos{\left(4 x \right)}\, dx}{2}

              1. Let u=4xu = 4 x.

                Then let du=4dxdu = 4 dx and substitute du4\frac{du}{4}:

                cos(u)16du\int \frac{\cos{\left(u \right)}}{16}\, du

                1. The integral of a constant times a function is the constant times the integral of the function:

                  cos(u)4du=cos(u)du4\int \frac{\cos{\left(u \right)}}{4}\, du = \frac{\int \cos{\left(u \right)}\, du}{4}

                  1. The integral of cosine is sine:

                    cos(u)du=sin(u)\int \cos{\left(u \right)}\, du = \sin{\left(u \right)}

                  So, the result is: sin(u)4\frac{\sin{\left(u \right)}}{4}

                Now substitute uu back in:

                sin(4x)4\frac{\sin{\left(4 x \right)}}{4}

              So, the result is: sin(4x)8\frac{\sin{\left(4 x \right)}}{8}

            1. The integral of a constant is the constant times the variable of integration:

              12dx=x2\int \frac{1}{2}\, dx = \frac{x}{2}

            The result is: x2+sin(4x)8\frac{x}{2} + \frac{\sin{\left(4 x \right)}}{8}

          So, the result is: x8+sin(4x)32\frac{x}{8} + \frac{\sin{\left(4 x \right)}}{32}

        1. The integral of a constant times a function is the constant times the integral of the function:

          cos(2x)2dx=cos(2x)dx2\int \frac{\cos{\left(2 x \right)}}{2}\, dx = \frac{\int \cos{\left(2 x \right)}\, dx}{2}

          1. Let u=2xu = 2 x.

            Then let du=2dxdu = 2 dx and substitute du2\frac{du}{2}:

            cos(u)4du\int \frac{\cos{\left(u \right)}}{4}\, du

            1. The integral of a constant times a function is the constant times the integral of the function:

              cos(u)2du=cos(u)du2\int \frac{\cos{\left(u \right)}}{2}\, du = \frac{\int \cos{\left(u \right)}\, du}{2}

              1. The integral of cosine is sine:

                cos(u)du=sin(u)\int \cos{\left(u \right)}\, du = \sin{\left(u \right)}

              So, the result is: sin(u)2\frac{\sin{\left(u \right)}}{2}

            Now substitute uu back in:

            sin(2x)2\frac{\sin{\left(2 x \right)}}{2}

          So, the result is: sin(2x)4\frac{\sin{\left(2 x \right)}}{4}

        1. The integral of a constant is the constant times the variable of integration:

          14dx=x4\int \frac{1}{4}\, dx = \frac{x}{4}

        The result is: 3x8+sin(2x)4+sin(4x)32\frac{3 x}{8} + \frac{\sin{\left(2 x \right)}}{4} + \frac{\sin{\left(4 x \right)}}{32}

      So, the result is: 147x249sin(2x)49sin(4x)8- \frac{147 x}{2} - 49 \sin{\left(2 x \right)} - \frac{49 \sin{\left(4 x \right)}}{8}

    1. The integral of a constant times a function is the constant times the integral of the function:

      21cos2(x)dx=21cos2(x)dx\int 21 \cos^{2}{\left(x \right)}\, dx = 21 \int \cos^{2}{\left(x \right)}\, dx

      1. Rewrite the integrand:

        cos2(x)=cos(2x)2+12\cos^{2}{\left(x \right)} = \frac{\cos{\left(2 x \right)}}{2} + \frac{1}{2}

      2. Integrate term-by-term:

        1. The integral of a constant times a function is the constant times the integral of the function:

          cos(2x)2dx=cos(2x)dx2\int \frac{\cos{\left(2 x \right)}}{2}\, dx = \frac{\int \cos{\left(2 x \right)}\, dx}{2}

          1. Let u=2xu = 2 x.

            Then let du=2dxdu = 2 dx and substitute du2\frac{du}{2}:

            cos(u)4du\int \frac{\cos{\left(u \right)}}{4}\, du

            1. The integral of a constant times a function is the constant times the integral of the function:

              cos(u)2du=cos(u)du2\int \frac{\cos{\left(u \right)}}{2}\, du = \frac{\int \cos{\left(u \right)}\, du}{2}

              1. The integral of cosine is sine:

                cos(u)du=sin(u)\int \cos{\left(u \right)}\, du = \sin{\left(u \right)}

              So, the result is: sin(u)2\frac{\sin{\left(u \right)}}{2}

            Now substitute uu back in:

            sin(2x)2\frac{\sin{\left(2 x \right)}}{2}

          So, the result is: sin(2x)4\frac{\sin{\left(2 x \right)}}{4}

        1. The integral of a constant is the constant times the variable of integration:

          12dx=x2\int \frac{1}{2}\, dx = \frac{x}{2}

        The result is: x2+sin(2x)4\frac{x}{2} + \frac{\sin{\left(2 x \right)}}{4}

      So, the result is: 21x2+21sin(2x)4\frac{21 x}{2} + \frac{21 \sin{\left(2 x \right)}}{4}

    The result is: 4sin5(2x)5sin3(2x)+sin(2x)4+sin(4x)8\frac{4 \sin^{5}{\left(2 x \right)}}{5} - \sin^{3}{\left(2 x \right)} + \frac{\sin{\left(2 x \right)}}{4} + \frac{\sin{\left(4 x \right)}}{8}

  3. Add the constant of integration:

    4sin5(2x)5sin3(2x)+sin(2x)4+sin(4x)8+constant\frac{4 \sin^{5}{\left(2 x \right)}}{5} - \sin^{3}{\left(2 x \right)} + \frac{\sin{\left(2 x \right)}}{4} + \frac{\sin{\left(4 x \right)}}{8}+ \mathrm{constant}


The answer is:

4sin5(2x)5sin3(2x)+sin(2x)4+sin(4x)8+constant\frac{4 \sin^{5}{\left(2 x \right)}}{5} - \sin^{3}{\left(2 x \right)} + \frac{\sin{\left(2 x \right)}}{4} + \frac{\sin{\left(4 x \right)}}{8}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                                                                  5     
 |                               3        sin(2*x)   sin(4*x)   4*sin (2*x)
 | cos(7*x)*cos(3*x) dx = C - sin (2*x) + -------- + -------- + -----------
 |                                           4          8            5     
/                                                                          
sin(10x)20+sin(4x)8{{\sin \left(10\,x\right)}\over{20}}+{{\sin \left(4\,x\right) }\over{8}}
The graph
0.001.000.100.200.300.400.500.600.700.800.902-2
The answer [src]
  3*cos(7)*sin(3)   7*cos(3)*sin(7)
- --------------- + ---------------
         40                40      
2sin10+5sin440{{2\,\sin 10+5\,\sin 4}\over{40}}
=
=
  3*cos(7)*sin(3)   7*cos(3)*sin(7)
- --------------- + ---------------
         40                40      
7sin(7)cos(3)403sin(3)cos(7)40\frac{7 \sin{\left(7 \right)} \cos{\left(3 \right)}}{40} - \frac{3 \sin{\left(3 \right)} \cos{\left(7 \right)}}{40}
Numerical answer [src]
-0.12180136745796
-0.12180136745796
The graph
Integral of cos(7x)cos(3x) dx

    Use the examples entering the upper and lower limits of integration.