Integral of cos(7x)cos(3x) dx
The solution
Detail solution
-
Rewrite the integrand:
cos(3x)cos(7x)=256cos10(x)−640cos8(x)+560cos6(x)−196cos4(x)+21cos2(x)
-
Integrate term-by-term:
-
The integral of a constant times a function is the constant times the integral of the function:
∫256cos10(x)dx=256∫cos10(x)dx
-
Rewrite the integrand:
cos10(x)=(2cos(2x)+21)5
-
There are multiple ways to do this integral.
Method #1
-
Rewrite the integrand:
(2cos(2x)+21)5=32cos5(2x)+325cos4(2x)+165cos3(2x)+165cos2(2x)+325cos(2x)+321
-
Integrate term-by-term:
-
The integral of a constant times a function is the constant times the integral of the function:
∫32cos5(2x)dx=32∫cos5(2x)dx
-
Rewrite the integrand:
cos5(2x)=(1−sin2(2x))2cos(2x)
-
There are multiple ways to do this integral.
Method #1
-
Let u=2x.
Then let du=2dx and substitute du:
∫(2sin4(u)cos(u)−sin2(u)cos(u)+2cos(u))du
-
Integrate term-by-term:
-
The integral of a constant times a function is the constant times the integral of the function:
∫2sin4(u)cos(u)du=2∫sin4(u)cos(u)du
-
Let u=sin(u).
Then let du=cos(u)du and substitute du:
∫u4du
-
The integral of un is n+1un+1 when n=−1:
∫u4du=5u5
Now substitute u back in:
5sin5(u)
So, the result is: 10sin5(u)
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−sin2(u)cos(u))du=−∫sin2(u)cos(u)du
-
Let u=sin(u).
Then let du=cos(u)du and substitute du:
∫u2du
-
The integral of un is n+1un+1 when n=−1:
∫u2du=3u3
Now substitute u back in:
3sin3(u)
So, the result is: −3sin3(u)
-
The integral of a constant times a function is the constant times the integral of the function:
∫2cos(u)du=2∫cos(u)du
-
The integral of cosine is sine:
∫cos(u)du=sin(u)
So, the result is: 2sin(u)
The result is: 10sin5(u)−3sin3(u)+2sin(u)
Now substitute u back in:
10sin5(2x)−3sin3(2x)+2sin(2x)
Method #2
-
Rewrite the integrand:
(1−sin2(2x))2cos(2x)=sin4(2x)cos(2x)−2sin2(2x)cos(2x)+cos(2x)
-
Integrate term-by-term:
-
Let u=sin(2x).
Then let du=2cos(2x)dx and substitute 2du:
∫4u4du
-
The integral of a constant times a function is the constant times the integral of the function:
∫2u4du=2∫u4du
-
The integral of un is n+1un+1 when n=−1:
∫u4du=5u5
So, the result is: 10u5
Now substitute u back in:
10sin5(2x)
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−2sin2(2x)cos(2x))dx=−2∫sin2(2x)cos(2x)dx
-
Let u=sin(2x).
Then let du=2cos(2x)dx and substitute 2du:
∫4u2du
-
The integral of a constant times a function is the constant times the integral of the function:
∫2u2du=2∫u2du
-
The integral of un is n+1un+1 when n=−1:
∫u2du=3u3
So, the result is: 6u3
Now substitute u back in:
6sin3(2x)
So, the result is: −3sin3(2x)
-
Let u=2x.
Then let du=2dx and substitute 2du:
∫4cos(u)du
-
The integral of a constant times a function is the constant times the integral of the function:
∫2cos(u)du=2∫cos(u)du
-
The integral of cosine is sine:
∫cos(u)du=sin(u)
So, the result is: 2sin(u)
Now substitute u back in:
2sin(2x)
The result is: 10sin5(2x)−3sin3(2x)+2sin(2x)
Method #3
-
Rewrite the integrand:
(1−sin2(2x))2cos(2x)=sin4(2x)cos(2x)−2sin2(2x)cos(2x)+cos(2x)
-
Integrate term-by-term:
-
Let u=sin(2x).
Then let du=2cos(2x)dx and substitute 2du:
∫4u4du
-
The integral of a constant times a function is the constant times the integral of the function:
∫2u4du=2∫u4du
-
The integral of un is n+1un+1 when n=−1:
∫u4du=5u5
So, the result is: 10u5
Now substitute u back in:
10sin5(2x)
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−2sin2(2x)cos(2x))dx=−2∫sin2(2x)cos(2x)dx
-
Let u=sin(2x).
Then let du=2cos(2x)dx and substitute 2du:
∫4u2du
-
The integral of a constant times a function is the constant times the integral of the function:
∫2u2du=2∫u2du
-
The integral of un is n+1un+1 when n=−1:
∫u2du=3u3
So, the result is: 6u3
Now substitute u back in:
6sin3(2x)
So, the result is: −3sin3(2x)
-
Let u=2x.
Then let du=2dx and substitute 2du:
∫4cos(u)du
-
The integral of a constant times a function is the constant times the integral of the function:
∫2cos(u)du=2∫cos(u)du
-
The integral of cosine is sine:
∫cos(u)du=sin(u)
So, the result is: 2sin(u)
Now substitute u back in:
2sin(2x)
The result is: 10sin5(2x)−3sin3(2x)+2sin(2x)
So, the result is: 320sin5(2x)−96sin3(2x)+64sin(2x)
-
The integral of a constant times a function is the constant times the integral of the function:
∫325cos4(2x)dx=325∫cos4(2x)dx
-
Rewrite the integrand:
cos4(2x)=(2cos(4x)+21)2
-
Rewrite the integrand:
(2cos(4x)+21)2=4cos2(4x)+2cos(4x)+41
-
Integrate term-by-term:
-
The integral of a constant times a function is the constant times the integral of the function:
∫4cos2(4x)dx=4∫cos2(4x)dx
-
Rewrite the integrand:
cos2(4x)=2cos(8x)+21
-
Integrate term-by-term:
-
The integral of a constant times a function is the constant times the integral of the function:
∫2cos(8x)dx=2∫cos(8x)dx
-
Let u=8x.
Then let du=8dx and substitute 8du:
∫64cos(u)du
-
The integral of a constant times a function is the constant times the integral of the function:
∫8cos(u)du=8∫cos(u)du
-
The integral of cosine is sine:
∫cos(u)du=sin(u)
So, the result is: 8sin(u)
Now substitute u back in:
8sin(8x)
So, the result is: 16sin(8x)
-
The integral of a constant is the constant times the variable of integration:
∫21dx=2x
The result is: 2x+16sin(8x)
So, the result is: 8x+64sin(8x)
-
The integral of a constant times a function is the constant times the integral of the function:
∫2cos(4x)dx=2∫cos(4x)dx
-
Let u=4x.
Then let du=4dx and substitute 4du:
∫16cos(u)du
-
The integral of a constant times a function is the constant times the integral of the function:
∫4cos(u)du=4∫cos(u)du
-
The integral of cosine is sine:
∫cos(u)du=sin(u)
So, the result is: 4sin(u)
Now substitute u back in:
4sin(4x)
So, the result is: 8sin(4x)
-
The integral of a constant is the constant times the variable of integration:
∫41dx=4x
The result is: 83x+8sin(4x)+64sin(8x)
So, the result is: 25615x+2565sin(4x)+20485sin(8x)
-
The integral of a constant times a function is the constant times the integral of the function:
∫165cos3(2x)dx=165∫cos3(2x)dx
-
Rewrite the integrand:
cos3(2x)=(1−sin2(2x))cos(2x)
-
Let u=sin(2x).
Then let du=2cos(2x)dx and substitute du:
∫(21−2u2)du
-
Integrate term-by-term:
-
The integral of a constant is the constant times the variable of integration:
∫21du=2u
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−2u2)du=−2∫u2du
-
The integral of un is n+1un+1 when n=−1:
∫u2du=3u3
So, the result is: −6u3
The result is: −6u3+2u
Now substitute u back in:
−6sin3(2x)+2sin(2x)
So, the result is: −965sin3(2x)+325sin(2x)
-
The integral of a constant times a function is the constant times the integral of the function:
∫165cos2(2x)dx=165∫cos2(2x)dx
-
Rewrite the integrand:
cos2(2x)=2cos(4x)+21
-
Integrate term-by-term:
-
The integral of a constant times a function is the constant times the integral of the function:
∫2cos(4x)dx=2∫cos(4x)dx
-
Let u=4x.
Then let du=4dx and substitute 4du:
∫16cos(u)du
-
The integral of a constant times a function is the constant times the integral of the function:
∫4cos(u)du=4∫cos(u)du
-
The integral of cosine is sine:
∫cos(u)du=sin(u)
So, the result is: 4sin(u)
Now substitute u back in:
4sin(4x)
So, the result is: 8sin(4x)
-
The integral of a constant is the constant times the variable of integration:
∫21dx=2x
The result is: 2x+8sin(4x)
So, the result is: 325x+1285sin(4x)
-
The integral of a constant times a function is the constant times the integral of the function:
∫325cos(2x)dx=325∫cos(2x)dx
-
Let u=2x.
Then let du=2dx and substitute 2du:
∫4cos(u)du
-
The integral of a constant times a function is the constant times the integral of the function:
∫2cos(u)du=2∫cos(u)du
-
The integral of cosine is sine:
∫cos(u)du=sin(u)
So, the result is: 2sin(u)
Now substitute u back in:
2sin(2x)
So, the result is: 645sin(2x)
-
The integral of a constant is the constant times the variable of integration:
∫321dx=32x
The result is: 25663x+320sin5(2x)−16sin3(2x)+4sin(2x)+25615sin(4x)+20485sin(8x)
Method #2
-
Rewrite the integrand:
(2cos(2x)+21)5=32cos5(2x)+325cos4(2x)+165cos3(2x)+165cos2(2x)+325cos(2x)+321
-
Integrate term-by-term:
-
The integral of a constant times a function is the constant times the integral of the function:
∫32cos5(2x)dx=32∫cos5(2x)dx
-
Rewrite the integrand:
cos5(2x)=(1−sin2(2x))2cos(2x)
-
Let u=2x.
Then let du=2dx and substitute du:
∫(2sin4(u)cos(u)−sin2(u)cos(u)+2cos(u))du
-
Integrate term-by-term:
-
The integral of a constant times a function is the constant times the integral of the function:
∫2sin4(u)cos(u)du=2∫sin4(u)cos(u)du
-
Let u=sin(u).
Then let du=cos(u)du and substitute du:
∫u4du
-
The integral of un is n+1un+1 when n=−1:
∫u4du=5u5
Now substitute u back in:
5sin5(u)
So, the result is: 10sin5(u)
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−sin2(u)cos(u))du=−∫sin2(u)cos(u)du
-
Let u=sin(u).
Then let du=cos(u)du and substitute du:
∫u2du
-
The integral of un is n+1un+1 when n=−1:
∫u2du=3u3
Now substitute u back in:
3sin3(u)
So, the result is: −3sin3(u)
-
The integral of a constant times a function is the constant times the integral of the function:
∫2cos(u)du=2∫cos(u)du
-
The integral of cosine is sine:
∫cos(u)du=sin(u)
So, the result is: 2sin(u)
The result is: 10sin5(u)−3sin3(u)+2sin(u)
Now substitute u back in:
10sin5(2x)−3sin3(2x)+2sin(2x)
So, the result is: 320sin5(2x)−96sin3(2x)+64sin(2x)
-
The integral of a constant times a function is the constant times the integral of the function:
∫325cos4(2x)dx=325∫cos4(2x)dx
-
Rewrite the integrand:
cos4(2x)=(2cos(4x)+21)2
-
Rewrite the integrand:
(2cos(4x)+21)2=4cos2(4x)+2cos(4x)+41
-
Integrate term-by-term:
-
The integral of a constant times a function is the constant times the integral of the function:
∫4cos2(4x)dx=4∫cos2(4x)dx
-
Rewrite the integrand:
cos2(4x)=2cos(8x)+21
-
Integrate term-by-term:
-
The integral of a constant times a function is the constant times the integral of the function:
∫2cos(8x)dx=2∫cos(8x)dx
-
Let u=8x.
Then let du=8dx and substitute 8du:
∫64cos(u)du
-
The integral of a constant times a function is the constant times the integral of the function:
∫8cos(u)du=8∫cos(u)du
-
The integral of cosine is sine:
∫cos(u)du=sin(u)
So, the result is: 8sin(u)
Now substitute u back in:
8sin(8x)
So, the result is: 16sin(8x)
-
The integral of a constant is the constant times the variable of integration:
∫21dx=2x
The result is: 2x+16sin(8x)
So, the result is: 8x+64sin(8x)
-
The integral of a constant times a function is the constant times the integral of the function:
∫2cos(4x)dx=2∫cos(4x)dx
-
Let u=4x.
Then let du=4dx and substitute 4du:
∫16cos(u)du
-
The integral of a constant times a function is the constant times the integral of the function:
∫4cos(u)du=4∫cos(u)du
-
The integral of cosine is sine:
∫cos(u)du=sin(u)
So, the result is: 4sin(u)
Now substitute u back in:
4sin(4x)
So, the result is: 8sin(4x)
-
The integral of a constant is the constant times the variable of integration:
∫41dx=4x
The result is: 83x+8sin(4x)+64sin(8x)
So, the result is: 25615x+2565sin(4x)+20485sin(8x)
-
The integral of a constant times a function is the constant times the integral of the function:
∫165cos3(2x)dx=165∫cos3(2x)dx
-
Rewrite the integrand:
cos3(2x)=(1−sin2(2x))cos(2x)
-
Let u=sin(2x).
Then let du=2cos(2x)dx and substitute du:
∫(21−2u2)du
-
Integrate term-by-term:
-
The integral of a constant is the constant times the variable of integration:
∫21du=2u
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−2u2)du=−2∫u2du
-
The integral of un is n+1un+1 when n=−1:
∫u2du=3u3
So, the result is: −6u3
The result is: −6u3+2u
Now substitute u back in:
−6sin3(2x)+2sin(2x)
So, the result is: −965sin3(2x)+325sin(2x)
-
The integral of a constant times a function is the constant times the integral of the function:
∫165cos2(2x)dx=165∫cos2(2x)dx
-
Rewrite the integrand:
cos2(2x)=2cos(4x)+21
-
Integrate term-by-term:
-
The integral of a constant times a function is the constant times the integral of the function:
∫2cos(4x)dx=2∫cos(4x)dx
-
Let u=4x.
Then let du=4dx and substitute 4du:
∫16cos(u)du
-
The integral of a constant times a function is the constant times the integral of the function:
∫4cos(u)du=4∫cos(u)du
-
The integral of cosine is sine:
∫cos(u)du=sin(u)
So, the result is: 4sin(u)
Now substitute u back in:
4sin(4x)
So, the result is: 8sin(4x)
-
The integral of a constant is the constant times the variable of integration:
∫21dx=2x
The result is: 2x+8sin(4x)
So, the result is: 325x+1285sin(4x)
-
The integral of a constant times a function is the constant times the integral of the function:
∫325cos(2x)dx=325∫cos(2x)dx
-
Let u=2x.
Then let du=2dx and substitute 2du:
∫4cos(u)du
-
The integral of a constant times a function is the constant times the integral of the function:
∫2cos(u)du=2∫cos(u)du
-
The integral of cosine is sine:
∫cos(u)du=sin(u)
So, the result is: 2sin(u)
Now substitute u back in:
2sin(2x)
So, the result is: 645sin(2x)
-
The integral of a constant is the constant times the variable of integration:
∫321dx=32x
The result is: 25663x+320sin5(2x)−16sin3(2x)+4sin(2x)+25615sin(4x)+20485sin(8x)
So, the result is: 63x+54sin5(2x)−16sin3(2x)+64sin(2x)+15sin(4x)+85sin(8x)
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−640cos8(x))dx=−640∫cos8(x)dx
-
Rewrite the integrand:
cos8(x)=(2cos(2x)+21)4
-
Rewrite the integrand:
(2cos(2x)+21)4=16cos4(2x)+4cos3(2x)+83cos2(2x)+4cos(2x)+161
-
Integrate term-by-term:
-
The integral of a constant times a function is the constant times the integral of the function:
∫16cos4(2x)dx=16∫cos4(2x)dx
-
Rewrite the integrand:
cos4(2x)=(2cos(4x)+21)2
-
Rewrite the integrand:
(2cos(4x)+21)2=4cos2(4x)+2cos(4x)+41
-
Integrate term-by-term:
-
The integral of a constant times a function is the constant times the integral of the function:
∫4cos2(4x)dx=4∫cos2(4x)dx
-
Rewrite the integrand:
cos2(4x)=2cos(8x)+21
-
Integrate term-by-term:
-
The integral of a constant times a function is the constant times the integral of the function:
∫2cos(8x)dx=2∫cos(8x)dx
-
Let u=8x.
Then let du=8dx and substitute 8du:
∫64cos(u)du
-
The integral of a constant times a function is the constant times the integral of the function:
∫8cos(u)du=8∫cos(u)du
-
The integral of cosine is sine:
∫cos(u)du=sin(u)
So, the result is: 8sin(u)
Now substitute u back in:
8sin(8x)
So, the result is: 16sin(8x)
-
The integral of a constant is the constant times the variable of integration:
∫21dx=2x
The result is: 2x+16sin(8x)
So, the result is: 8x+64sin(8x)
-
The integral of a constant times a function is the constant times the integral of the function:
∫2cos(4x)dx=2∫cos(4x)dx
-
Let u=4x.
Then let du=4dx and substitute 4du:
∫16cos(u)du
-
The integral of a constant times a function is the constant times the integral of the function:
∫4cos(u)du=4∫cos(u)du
-
The integral of cosine is sine:
∫cos(u)du=sin(u)
So, the result is: 4sin(u)
Now substitute u back in:
4sin(4x)
So, the result is: 8sin(4x)
-
The integral of a constant is the constant times the variable of integration:
∫41dx=4x
The result is: 83x+8sin(4x)+64sin(8x)
So, the result is: 1283x+128sin(4x)+1024sin(8x)
-
The integral of a constant times a function is the constant times the integral of the function:
∫4cos3(2x)dx=4∫cos3(2x)dx
-
Rewrite the integrand:
cos3(2x)=(1−sin2(2x))cos(2x)
-
Let u=sin(2x).
Then let du=2cos(2x)dx and substitute du:
∫(21−2u2)du
-
Integrate term-by-term:
-
The integral of a constant is the constant times the variable of integration:
∫21du=2u
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−2u2)du=−2∫u2du
-
The integral of un is n+1un+1 when n=−1:
∫u2du=3u3
So, the result is: −6u3
The result is: −6u3+2u
Now substitute u back in:
−6sin3(2x)+2sin(2x)
So, the result is: −24sin3(2x)+8sin(2x)
-
The integral of a constant times a function is the constant times the integral of the function:
∫83cos2(2x)dx=83∫cos2(2x)dx
-
Rewrite the integrand:
cos2(2x)=2cos(4x)+21
-
Integrate term-by-term:
-
The integral of a constant times a function is the constant times the integral of the function:
∫2cos(4x)dx=2∫cos(4x)dx
-
Let u=4x.
Then let du=4dx and substitute 4du:
∫16cos(u)du
-
The integral of a constant times a function is the constant times the integral of the function:
∫4cos(u)du=4∫cos(u)du
-
The integral of cosine is sine:
∫cos(u)du=sin(u)
So, the result is: 4sin(u)
Now substitute u back in:
4sin(4x)
So, the result is: 8sin(4x)
-
The integral of a constant is the constant times the variable of integration:
∫21dx=2x
The result is: 2x+8sin(4x)
So, the result is: 163x+643sin(4x)
-
The integral of a constant times a function is the constant times the integral of the function:
∫4cos(2x)dx=4∫cos(2x)dx
-
Let u=2x.
Then let du=2dx and substitute 2du:
∫4cos(u)du
-
The integral of a constant times a function is the constant times the integral of the function:
∫2cos(u)du=2∫cos(u)du
-
The integral of cosine is sine:
∫cos(u)du=sin(u)
So, the result is: 2sin(u)
Now substitute u back in:
2sin(2x)
So, the result is: 8sin(2x)
-
The integral of a constant is the constant times the variable of integration:
∫161dx=16x
The result is: 12835x−24sin3(2x)+4sin(2x)+1287sin(4x)+1024sin(8x)
So, the result is: −175x+380sin3(2x)−160sin(2x)−35sin(4x)−85sin(8x)
-
The integral of a constant times a function is the constant times the integral of the function:
∫560cos6(x)dx=560∫cos6(x)dx
-
Rewrite the integrand:
cos6(x)=(2cos(2x)+21)3
-
Rewrite the integrand:
(2cos(2x)+21)3=8cos3(2x)+83cos2(2x)+83cos(2x)+81
-
Integrate term-by-term:
-
The integral of a constant times a function is the constant times the integral of the function:
∫8cos3(2x)dx=8∫cos3(2x)dx
-
Rewrite the integrand:
cos3(2x)=(1−sin2(2x))cos(2x)
-
Let u=sin(2x).
Then let du=2cos(2x)dx and substitute du:
∫(21−2u2)du
-
Integrate term-by-term:
-
The integral of a constant is the constant times the variable of integration:
∫21du=2u
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−2u2)du=−2∫u2du
-
The integral of un is n+1un+1 when n=−1:
∫u2du=3u3
So, the result is: −6u3
The result is: −6u3+2u
Now substitute u back in:
−6sin3(2x)+2sin(2x)
So, the result is: −48sin3(2x)+16sin(2x)
-
The integral of a constant times a function is the constant times the integral of the function:
∫83cos2(2x)dx=83∫cos2(2x)dx
-
Rewrite the integrand:
cos2(2x)=2cos(4x)+21
-
Integrate term-by-term:
-
The integral of a constant times a function is the constant times the integral of the function:
∫2cos(4x)dx=2∫cos(4x)dx
-
Let u=4x.
Then let du=4dx and substitute 4du:
∫16cos(u)du
-
The integral of a constant times a function is the constant times the integral of the function:
∫4cos(u)du=4∫cos(u)du
-
The integral of cosine is sine:
∫cos(u)du=sin(u)
So, the result is: 4sin(u)
Now substitute u back in:
4sin(4x)
So, the result is: 8sin(4x)
-
The integral of a constant is the constant times the variable of integration:
∫21dx=2x
The result is: 2x+8sin(4x)
So, the result is: 163x+643sin(4x)
-
The integral of a constant times a function is the constant times the integral of the function:
∫83cos(2x)dx=83∫cos(2x)dx
-
Let u=2x.
Then let du=2dx and substitute 2du:
∫4cos(u)du
-
The integral of a constant times a function is the constant times the integral of the function:
∫2cos(u)du=2∫cos(u)du
-
The integral of cosine is sine:
∫cos(u)du=sin(u)
So, the result is: 2sin(u)
Now substitute u back in:
2sin(2x)
So, the result is: 163sin(2x)
-
The integral of a constant is the constant times the variable of integration:
∫81dx=8x
The result is: 165x−48sin3(2x)+4sin(2x)+643sin(4x)
So, the result is: 175x−335sin3(2x)+140sin(2x)+4105sin(4x)
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−196cos4(x))dx=−196∫cos4(x)dx
-
Rewrite the integrand:
cos4(x)=(2cos(2x)+21)2
-
Rewrite the integrand:
(2cos(2x)+21)2=4cos2(2x)+2cos(2x)+41
-
Integrate term-by-term:
-
The integral of a constant times a function is the constant times the integral of the function:
∫4cos2(2x)dx=4∫cos2(2x)dx
-
Rewrite the integrand:
cos2(2x)=2cos(4x)+21
-
Integrate term-by-term:
-
The integral of a constant times a function is the constant times the integral of the function:
∫2cos(4x)dx=2∫cos(4x)dx
-
Let u=4x.
Then let du=4dx and substitute 4du:
∫16cos(u)du
-
The integral of a constant times a function is the constant times the integral of the function:
∫4cos(u)du=4∫cos(u)du
-
The integral of cosine is sine:
∫cos(u)du=sin(u)
So, the result is: 4sin(u)
Now substitute u back in:
4sin(4x)
So, the result is: 8sin(4x)
-
The integral of a constant is the constant times the variable of integration:
∫21dx=2x
The result is: 2x+8sin(4x)
So, the result is: 8x+32sin(4x)
-
The integral of a constant times a function is the constant times the integral of the function:
∫2cos(2x)dx=2∫cos(2x)dx
-
Let u=2x.
Then let du=2dx and substitute 2du:
∫4cos(u)du
-
The integral of a constant times a function is the constant times the integral of the function:
∫2cos(u)du=2∫cos(u)du
-
The integral of cosine is sine:
∫cos(u)du=sin(u)
So, the result is: 2sin(u)
Now substitute u back in:
2sin(2x)
So, the result is: 4sin(2x)
-
The integral of a constant is the constant times the variable of integration:
∫41dx=4x
The result is: 83x+4sin(2x)+32sin(4x)
So, the result is: −2147x−49sin(2x)−849sin(4x)
-
The integral of a constant times a function is the constant times the integral of the function:
∫21cos2(x)dx=21∫cos2(x)dx
-
Rewrite the integrand:
cos2(x)=2cos(2x)+21
-
Integrate term-by-term:
-
The integral of a constant times a function is the constant times the integral of the function:
∫2cos(2x)dx=2∫cos(2x)dx
-
Let u=2x.
Then let du=2dx and substitute 2du:
∫4cos(u)du
-
The integral of a constant times a function is the constant times the integral of the function:
∫2cos(u)du=2∫cos(u)du
-
The integral of cosine is sine:
∫cos(u)du=sin(u)
So, the result is: 2sin(u)
Now substitute u back in:
2sin(2x)
So, the result is: 4sin(2x)
-
The integral of a constant is the constant times the variable of integration:
∫21dx=2x
The result is: 2x+4sin(2x)
So, the result is: 221x+421sin(2x)
The result is: 54sin5(2x)−sin3(2x)+4sin(2x)+8sin(4x)
-
Add the constant of integration:
54sin5(2x)−sin3(2x)+4sin(2x)+8sin(4x)+constant
The answer is:
54sin5(2x)−sin3(2x)+4sin(2x)+8sin(4x)+constant
The answer (Indefinite)
[src]
/ 5
| 3 sin(2*x) sin(4*x) 4*sin (2*x)
| cos(7*x)*cos(3*x) dx = C - sin (2*x) + -------- + -------- + -----------
| 4 8 5
/
20sin(10x)+8sin(4x)
The graph
3*cos(7)*sin(3) 7*cos(3)*sin(7)
- --------------- + ---------------
40 40
402sin10+5sin4
=
3*cos(7)*sin(3) 7*cos(3)*sin(7)
- --------------- + ---------------
40 40
407sin(7)cos(3)−403sin(3)cos(7)
Use the examples entering the upper and lower limits of integration.