Mister Exam

Integral of sin(sqrt(x)) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1              
  /              
 |               
 |     /  ___\   
 |  sin\\/ x / dx
 |               
/                
0                
01sin(x)dx\int\limits_{0}^{1} \sin{\left(\sqrt{x} \right)}\, dx
Integral(sin(sqrt(x)), (x, 0, 1))
Detail solution
  1. Let u=xu = \sqrt{x}.

    Then let du=dx2xdu = \frac{dx}{2 \sqrt{x}} and substitute 2du2 du:

    2usin(u)du\int 2 u \sin{\left(u \right)}\, du

    1. The integral of a constant times a function is the constant times the integral of the function:

      usin(u)du=2usin(u)du\int u \sin{\left(u \right)}\, du = 2 \int u \sin{\left(u \right)}\, du

      1. Use integration by parts:

        udv=uvvdu\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}

        Let u(u)=uu{\left(u \right)} = u and let dv(u)=sin(u)\operatorname{dv}{\left(u \right)} = \sin{\left(u \right)}.

        Then du(u)=1\operatorname{du}{\left(u \right)} = 1.

        To find v(u)v{\left(u \right)}:

        1. The integral of sine is negative cosine:

          sin(u)du=cos(u)\int \sin{\left(u \right)}\, du = - \cos{\left(u \right)}

        Now evaluate the sub-integral.

      2. The integral of a constant times a function is the constant times the integral of the function:

        (cos(u))du=cos(u)du\int \left(- \cos{\left(u \right)}\right)\, du = - \int \cos{\left(u \right)}\, du

        1. The integral of cosine is sine:

          cos(u)du=sin(u)\int \cos{\left(u \right)}\, du = \sin{\left(u \right)}

        So, the result is: sin(u)- \sin{\left(u \right)}

      So, the result is: 2ucos(u)+2sin(u)- 2 u \cos{\left(u \right)} + 2 \sin{\left(u \right)}

    Now substitute uu back in:

    2xcos(x)+2sin(x)- 2 \sqrt{x} \cos{\left(\sqrt{x} \right)} + 2 \sin{\left(\sqrt{x} \right)}

  2. Add the constant of integration:

    2xcos(x)+2sin(x)+constant- 2 \sqrt{x} \cos{\left(\sqrt{x} \right)} + 2 \sin{\left(\sqrt{x} \right)}+ \mathrm{constant}


The answer is:

2xcos(x)+2sin(x)+constant- 2 \sqrt{x} \cos{\left(\sqrt{x} \right)} + 2 \sin{\left(\sqrt{x} \right)}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                                                     
 |                                                      
 |    /  ___\               /  ___\       ___    /  ___\
 | sin\\/ x / dx = C + 2*sin\\/ x / - 2*\/ x *cos\\/ x /
 |                                                      
/                                                       
sin(x)dx=C2xcos(x)+2sin(x)\int \sin{\left(\sqrt{x} \right)}\, dx = C - 2 \sqrt{x} \cos{\left(\sqrt{x} \right)} + 2 \sin{\left(\sqrt{x} \right)}
The graph
0.001.000.100.200.300.400.500.600.700.800.900.01.0
The answer [src]
-2*cos(1) + 2*sin(1)
2cos(1)+2sin(1)- 2 \cos{\left(1 \right)} + 2 \sin{\left(1 \right)}
=
=
-2*cos(1) + 2*sin(1)
2cos(1)+2sin(1)- 2 \cos{\left(1 \right)} + 2 \sin{\left(1 \right)}
-2*cos(1) + 2*sin(1)
Numerical answer [src]
0.602337357879514
0.602337357879514
The graph
Integral of sin(sqrt(x)) dx

    Use the examples entering the upper and lower limits of integration.