Integral of sin(sqrt(x)) dx
The solution
Detail solution
-
Let u=x.
Then let du=2xdx and substitute 2du:
∫2usin(u)du
-
The integral of a constant times a function is the constant times the integral of the function:
∫usin(u)du=2∫usin(u)du
-
Use integration by parts:
∫udv=uv−∫vdu
Let u(u)=u and let dv(u)=sin(u).
Then du(u)=1.
To find v(u):
-
The integral of sine is negative cosine:
∫sin(u)du=−cos(u)
Now evaluate the sub-integral.
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−cos(u))du=−∫cos(u)du
-
The integral of cosine is sine:
∫cos(u)du=sin(u)
So, the result is: −sin(u)
So, the result is: −2ucos(u)+2sin(u)
Now substitute u back in:
−2xcos(x)+2sin(x)
-
Add the constant of integration:
−2xcos(x)+2sin(x)+constant
The answer is:
−2xcos(x)+2sin(x)+constant
The answer (Indefinite)
[src]
/
|
| / ___\ / ___\ ___ / ___\
| sin\\/ x / dx = C + 2*sin\\/ x / - 2*\/ x *cos\\/ x /
|
/
∫sin(x)dx=C−2xcos(x)+2sin(x)
The graph
−2cos(1)+2sin(1)
=
−2cos(1)+2sin(1)
Use the examples entering the upper and lower limits of integration.