Mister Exam

Derivative of sin(sqrt(x))

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
   /  ___\
sin\\/ x /
$$\sin{\left(\sqrt{x} \right)}$$
sin(sqrt(x))
Detail solution
  1. Let .

  2. The derivative of sine is cosine:

  3. Then, apply the chain rule. Multiply by :

    1. Apply the power rule: goes to

    The result of the chain rule is:


The answer is:

The graph
The first derivative [src]
   /  ___\
cos\\/ x /
----------
     ___  
 2*\/ x   
$$\frac{\cos{\left(\sqrt{x} \right)}}{2 \sqrt{x}}$$
The second derivative [src]
 /   /  ___\      /  ___\\ 
 |sin\\/ x /   cos\\/ x /| 
-|---------- + ----------| 
 |    x            3/2   | 
 \                x      / 
---------------------------
             4             
$$- \frac{\frac{\sin{\left(\sqrt{x} \right)}}{x} + \frac{\cos{\left(\sqrt{x} \right)}}{x^{\frac{3}{2}}}}{4}$$
The third derivative [src]
     /  ___\        /  ___\        /  ___\
  cos\\/ x /   3*sin\\/ x /   3*cos\\/ x /
- ---------- + ------------ + ------------
      3/2            2             5/2    
     x              x             x       
------------------------------------------
                    8                     
$$\frac{\frac{3 \sin{\left(\sqrt{x} \right)}}{x^{2}} - \frac{\cos{\left(\sqrt{x} \right)}}{x^{\frac{3}{2}}} + \frac{3 \cos{\left(\sqrt{x} \right)}}{x^{\frac{5}{2}}}}{8}$$
The graph
Derivative of sin(sqrt(x))