Mister Exam

Other calculators

Integral of 5sinsqrtx/sqrtx dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  0                
  /                
 |                 
 |       /  ___\   
 |  5*sin\\/ x /   
 |  ------------ dx
 |       ___       
 |     \/ x        
 |                 
/                  
0                  
$$\int\limits_{0}^{0} \frac{5 \sin{\left(\sqrt{x} \right)}}{\sqrt{x}}\, dx$$
Integral((5*sin(sqrt(x)))/sqrt(x), (x, 0, 0))
Detail solution
  1. Let .

    Then let and substitute :

    1. The integral of a constant times a function is the constant times the integral of the function:

      1. The integral of sine is negative cosine:

      So, the result is:

    Now substitute back in:

  2. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                   
 |                                    
 |      /  ___\                       
 | 5*sin\\/ x /                /  ___\
 | ------------ dx = C - 10*cos\\/ x /
 |      ___                           
 |    \/ x                            
 |                                    
/                                     
$$\int \frac{5 \sin{\left(\sqrt{x} \right)}}{\sqrt{x}}\, dx = C - 10 \cos{\left(\sqrt{x} \right)}$$
The graph
The answer [src]
0
$$0$$
=
=
0
$$0$$
0
Numerical answer [src]
0.0
0.0

    Use the examples entering the upper and lower limits of integration.