Mister Exam

Other calculators

Integral of (1/2sqrt(x))arcsinsqrt(x) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                     
  /                     
 |                      
 |    ___               
 |  \/ x      /  ___\   
 |  -----*asin\\/ x / dx
 |    2                 
 |                      
/                       
0                       
$$\int\limits_{0}^{1} \frac{\sqrt{x}}{2} \operatorname{asin}{\left(\sqrt{x} \right)}\, dx$$
Integral((sqrt(x)/2)*asin(sqrt(x)), (x, 0, 1))
Detail solution
  1. There are multiple ways to do this integral.

    Method #1

    1. Let .

      Then let and substitute :

      1. Use integration by parts:

        Let and let .

        Then .

        To find :

        1. The integral of is when :

        Now evaluate the sub-integral.

      2. The integral of a constant times a function is the constant times the integral of the function:

          TrigSubstitutionRule(theta=_theta, func=sin(_theta), rewritten=sin(_theta)**3, substep=RewriteRule(rewritten=(1 - cos(_theta)**2)*sin(_theta), substep=AlternativeRule(alternatives=[URule(u_var=_u, u_func=cos(_theta), constant=1, substep=AddRule(substeps=[PowerRule(base=_u, exp=2, context=_u**2, symbol=_u), ConstantRule(constant=-1, context=-1, symbol=_u)], context=_u**2 - 1, symbol=_u), context=(1 - cos(_theta)**2)*sin(_theta), symbol=_theta), RewriteRule(rewritten=-sin(_theta)*cos(_theta)**2 + sin(_theta), substep=AddRule(substeps=[ConstantTimesRule(constant=-1, other=sin(_theta)*cos(_theta)**2, substep=URule(u_var=_u, u_func=cos(_theta), constant=-1, substep=ConstantTimesRule(constant=-1, other=_u**2, substep=PowerRule(base=_u, exp=2, context=_u**2, symbol=_u), context=_u**2, symbol=_u), context=sin(_theta)*cos(_theta)**2, symbol=_theta), context=-sin(_theta)*cos(_theta)**2, symbol=_theta), TrigRule(func='sin', arg=_theta, context=sin(_theta), symbol=_theta)], context=-sin(_theta)*cos(_theta)**2 + sin(_theta), symbol=_theta), context=(1 - cos(_theta)**2)*sin(_theta), symbol=_theta), RewriteRule(rewritten=-sin(_theta)*cos(_theta)**2 + sin(_theta), substep=AddRule(substeps=[ConstantTimesRule(constant=-1, other=sin(_theta)*cos(_theta)**2, substep=URule(u_var=_u, u_func=cos(_theta), constant=-1, substep=ConstantTimesRule(constant=-1, other=_u**2, substep=PowerRule(base=_u, exp=2, context=_u**2, symbol=_u), context=_u**2, symbol=_u), context=sin(_theta)*cos(_theta)**2, symbol=_theta), context=-sin(_theta)*cos(_theta)**2, symbol=_theta), TrigRule(func='sin', arg=_theta, context=sin(_theta), symbol=_theta)], context=-sin(_theta)*cos(_theta)**2 + sin(_theta), symbol=_theta), context=(1 - cos(_theta)**2)*sin(_theta), symbol=_theta)], context=(1 - cos(_theta)**2)*sin(_theta), symbol=_theta), context=sin(_theta)**3, symbol=_theta), restriction=(_u > -1) & (_u < 1), context=_u**3/sqrt(1 - _u**2), symbol=_u)

        So, the result is:

      Now substitute back in:

    Method #2

    1. Use integration by parts:

      Let and let .

      Then .

      To find :

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. The integral of is when :

        So, the result is:

      Now evaluate the sub-integral.

    2. The integral of a constant times a function is the constant times the integral of the function:

      1. Let .

        Then let and substitute :

        1. Integrate term-by-term:

          1. The integral of a constant times a function is the constant times the integral of the function:

            1. There are multiple ways to do this integral.

              Method #1

              1. Rewrite the integrand:

              2. Integrate term-by-term:

                1. The integral of a constant is the constant times the variable of integration:

                1. The integral of a constant times a function is the constant times the integral of the function:

                  1. The integral of is when :

                  So, the result is:

                1. The integral of is when :

                The result is:

              Method #2

              1. Rewrite the integrand:

              2. Rewrite the integrand:

              3. Integrate term-by-term:

                1. The integral of a constant is the constant times the variable of integration:

                1. The integral of a constant times a function is the constant times the integral of the function:

                  1. The integral of is when :

                  So, the result is:

                1. The integral of is when :

                The result is:

            So, the result is:

          1. The integral of a constant is the constant times the variable of integration:

          1. The integral of a constant times a function is the constant times the integral of the function:

            1. The integral of is when :

            So, the result is:

          The result is:

        Now substitute back in:

      So, the result is:

  2. Now simplify:

  3. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
                              /                     3/2                                           
  /                           |    _______   (1 - x)                                              
 |                            <- \/ 1 - x  + ----------  for And(x >= 0, x < 1)                   
 |   ___                      |                  3                                 3/2     /  ___\
 | \/ x      /  ___\          \                                                   x   *asin\\/ x /
 | -----*asin\\/ x / dx = C - ------------------------------------------------- + ----------------
 |   2                                                3                                  3        
 |                                                                                                
/                                                                                                 
$$\int \frac{\sqrt{x}}{2} \operatorname{asin}{\left(\sqrt{x} \right)}\, dx = C + \frac{x^{\frac{3}{2}} \operatorname{asin}{\left(\sqrt{x} \right)}}{3} - \frac{\begin{cases} \frac{\left(1 - x\right)^{\frac{3}{2}}}{3} - \sqrt{1 - x} & \text{for}\: x \geq 0 \wedge x < 1 \end{cases}}{3}$$
The graph
The answer [src]
  2   pi
- - + --
  9   6 
$$- \frac{2}{9} + \frac{\pi}{6}$$
=
=
  2   pi
- - + --
  9   6 
$$- \frac{2}{9} + \frac{\pi}{6}$$
-2/9 + pi/6
Numerical answer [src]
0.301376553376077
0.301376553376077

    Use the examples entering the upper and lower limits of integration.