1 / | | ___ | \/ x / ___\ | -----*asin\\/ x / dx | 2 | / 0
Integral((sqrt(x)/2)*asin(sqrt(x)), (x, 0, 1))
There are multiple ways to do this integral.
Let .
Then let and substitute :
Use integration by parts:
Let and let .
Then .
To find :
The integral of is when :
Now evaluate the sub-integral.
The integral of a constant times a function is the constant times the integral of the function:
TrigSubstitutionRule(theta=_theta, func=sin(_theta), rewritten=sin(_theta)**3, substep=RewriteRule(rewritten=(1 - cos(_theta)**2)*sin(_theta), substep=AlternativeRule(alternatives=[URule(u_var=_u, u_func=cos(_theta), constant=1, substep=AddRule(substeps=[PowerRule(base=_u, exp=2, context=_u**2, symbol=_u), ConstantRule(constant=-1, context=-1, symbol=_u)], context=_u**2 - 1, symbol=_u), context=(1 - cos(_theta)**2)*sin(_theta), symbol=_theta), RewriteRule(rewritten=-sin(_theta)*cos(_theta)**2 + sin(_theta), substep=AddRule(substeps=[ConstantTimesRule(constant=-1, other=sin(_theta)*cos(_theta)**2, substep=URule(u_var=_u, u_func=cos(_theta), constant=-1, substep=ConstantTimesRule(constant=-1, other=_u**2, substep=PowerRule(base=_u, exp=2, context=_u**2, symbol=_u), context=_u**2, symbol=_u), context=sin(_theta)*cos(_theta)**2, symbol=_theta), context=-sin(_theta)*cos(_theta)**2, symbol=_theta), TrigRule(func='sin', arg=_theta, context=sin(_theta), symbol=_theta)], context=-sin(_theta)*cos(_theta)**2 + sin(_theta), symbol=_theta), context=(1 - cos(_theta)**2)*sin(_theta), symbol=_theta), RewriteRule(rewritten=-sin(_theta)*cos(_theta)**2 + sin(_theta), substep=AddRule(substeps=[ConstantTimesRule(constant=-1, other=sin(_theta)*cos(_theta)**2, substep=URule(u_var=_u, u_func=cos(_theta), constant=-1, substep=ConstantTimesRule(constant=-1, other=_u**2, substep=PowerRule(base=_u, exp=2, context=_u**2, symbol=_u), context=_u**2, symbol=_u), context=sin(_theta)*cos(_theta)**2, symbol=_theta), context=-sin(_theta)*cos(_theta)**2, symbol=_theta), TrigRule(func='sin', arg=_theta, context=sin(_theta), symbol=_theta)], context=-sin(_theta)*cos(_theta)**2 + sin(_theta), symbol=_theta), context=(1 - cos(_theta)**2)*sin(_theta), symbol=_theta)], context=(1 - cos(_theta)**2)*sin(_theta), symbol=_theta), context=sin(_theta)**3, symbol=_theta), restriction=(_u > -1) & (_u < 1), context=_u**3/sqrt(1 - _u**2), symbol=_u)
So, the result is:
Now substitute back in:
Use integration by parts:
Let and let .
Then .
To find :
The integral of a constant times a function is the constant times the integral of the function:
The integral of is when :
So, the result is:
Now evaluate the sub-integral.
The integral of a constant times a function is the constant times the integral of the function:
Let .
Then let and substitute :
Integrate term-by-term:
The integral of a constant times a function is the constant times the integral of the function:
There are multiple ways to do this integral.
Rewrite the integrand:
Integrate term-by-term:
The integral of a constant is the constant times the variable of integration:
The integral of a constant times a function is the constant times the integral of the function:
The integral of is when :
So, the result is:
The integral of is when :
The result is:
Rewrite the integrand:
Rewrite the integrand:
Integrate term-by-term:
The integral of a constant is the constant times the variable of integration:
The integral of a constant times a function is the constant times the integral of the function:
The integral of is when :
So, the result is:
The integral of is when :
The result is:
So, the result is:
The integral of a constant is the constant times the variable of integration:
The integral of a constant times a function is the constant times the integral of the function:
The integral of is when :
So, the result is:
The result is:
Now substitute back in:
So, the result is:
Now simplify:
Add the constant of integration:
The answer is:
/ 3/2 / | _______ (1 - x) | <- \/ 1 - x + ---------- for And(x >= 0, x < 1) | ___ | 3 3/2 / ___\ | \/ x / ___\ \ x *asin\\/ x / | -----*asin\\/ x / dx = C - ------------------------------------------------- + ---------------- | 2 3 3 | /
2 pi - - + -- 9 6
=
2 pi - - + -- 9 6
-2/9 + pi/6
Use the examples entering the upper and lower limits of integration.