Mister Exam

Other calculators


sin(1/x)

Integral of sin(1/x) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1            
  /            
 |             
 |     /  1\   
 |  sin|1*-| dx
 |     \  x/   
 |             
/              
0              
$$\int\limits_{0}^{1} \sin{\left(1 \cdot \frac{1}{x} \right)}\, dx$$
The answer (Indefinite) [src]
                                /1 \                    
  /                          log|--|                    
 |                              | 2|                    
 |    /  1\            /1\      \x /        /1\      /1\
 | sin|1*-| dx = C - Ci|-| - ------- + x*sin|-| + log|-|
 |    \  x/            \x/      2           \x/      \x/
 |                                                      
/                                                       
$${{2\,\sin \left({{1}\over{x}}\right)\,x+\Gamma\left(0 , {{i}\over{x }}\right)+\Gamma\left(0 , -{{i}\over{x}}\right)}\over{2}}$$
The graph
The answer [src]
-Ci(1) + sin(1)
$${{2\,\sin 1+\Gamma\left(0 , i\right)+\Gamma\left(0 , -i\right) }\over{2}}$$
=
=
-Ci(1) + sin(1)
$$- \operatorname{Ci}{\left(1 \right)} + \sin{\left(1 \right)}$$
Numerical answer [src]
0.505519231923873
0.505519231923873
The graph
Integral of sin(1/x) dx

    Use the examples entering the upper and lower limits of integration.