Mister Exam

Integral of xcsc²x dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1             
  /             
 |              
 |       2      
 |  x*csc (x) dx
 |              
/               
0               
$$\int\limits_{0}^{1} x \csc^{2}{\left(x \right)}\, dx$$
Integral(x*csc(x)^2, (x, 0, 1))
Detail solution
  1. Use integration by parts:

    Let and let .

    Then .

    To find :

    Now evaluate the sub-integral.

  2. The integral of a constant times a function is the constant times the integral of the function:

    1. Rewrite the integrand:

    2. Let .

      Then let and substitute :

      1. The integral of is .

      Now substitute back in:

    So, the result is:

  3. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                         
 |                                          
 |      2                                   
 | x*csc (x) dx = C - x*cot(x) + log(sin(x))
 |                                          
/                                           
$${{\left(\sin ^2\left(2\,x\right)+\cos ^2\left(2\,x\right)-2\,\cos \left(2\,x\right)+1\right)\,\log \left(\sin ^2x+\cos ^2x+2\,\cos x+1 \right)+\left(\sin ^2\left(2\,x\right)+\cos ^2\left(2\,x\right)-2\, \cos \left(2\,x\right)+1\right)\,\log \left(\sin ^2x+\cos ^2x-2\, \cos x+1\right)-4\,x\,\sin \left(2\,x\right)}\over{2\,\sin ^2\left(2 \,x\right)+2\,\cos ^2\left(2\,x\right)-4\,\cos \left(2\,x\right)+2}}$$
The answer [src]
oo
$${\it \%a}$$
=
=
oo
$$\infty$$
Numerical answer [src]
44.2757497717895
44.2757497717895

    Use the examples entering the upper and lower limits of integration.