Mister Exam

Derivative of sin(1/x)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
   /1\
sin|-|
   \x/
$$\sin{\left(\frac{1}{x} \right)}$$
sin(1/x)
Detail solution
  1. Let .

  2. The derivative of sine is cosine:

  3. Then, apply the chain rule. Multiply by :

    1. Apply the power rule: goes to

    The result of the chain rule is:


The answer is:

The graph
The first derivative [src]
    /1\ 
-cos|-| 
    \x/ 
--------
    2   
   x    
$$- \frac{\cos{\left(\frac{1}{x} \right)}}{x^{2}}$$
The second derivative [src]
              /1\
           sin|-|
     /1\      \x/
2*cos|-| - ------
     \x/     x   
-----------------
         3       
        x        
$$\frac{2 \cos{\left(\frac{1}{x} \right)} - \frac{\sin{\left(\frac{1}{x} \right)}}{x}}{x^{3}}$$
The third derivative [src]
                /1\        /1\
             cos|-|   6*sin|-|
       /1\      \x/        \x/
- 6*cos|-| + ------ + --------
       \x/      2        x    
               x              
------------------------------
               4              
              x               
$$\frac{- 6 \cos{\left(\frac{1}{x} \right)} + \frac{6 \sin{\left(\frac{1}{x} \right)}}{x} + \frac{\cos{\left(\frac{1}{x} \right)}}{x^{2}}}{x^{4}}$$
The graph
Derivative of sin(1/x)