Detail solution
-
Let .
-
The derivative of sine is cosine:
-
Then, apply the chain rule. Multiply by :
-
Apply the power rule: goes to
The result of the chain rule is:
The answer is:
The first derivative
[src]
/1\
-cos|-|
\x/
--------
2
x
$$- \frac{\cos{\left(\frac{1}{x} \right)}}{x^{2}}$$
The second derivative
[src]
/1\
sin|-|
/1\ \x/
2*cos|-| - ------
\x/ x
-----------------
3
x
$$\frac{2 \cos{\left(\frac{1}{x} \right)} - \frac{\sin{\left(\frac{1}{x} \right)}}{x}}{x^{3}}$$
The third derivative
[src]
/1\ /1\
cos|-| 6*sin|-|
/1\ \x/ \x/
- 6*cos|-| + ------ + --------
\x/ 2 x
x
------------------------------
4
x
$$\frac{- 6 \cos{\left(\frac{1}{x} \right)} + \frac{6 \sin{\left(\frac{1}{x} \right)}}{x} + \frac{\cos{\left(\frac{1}{x} \right)}}{x^{2}}}{x^{4}}$$