Let's find the inflection points, we'll need to solve the equation for this
$$\frac{d^{2}}{d x^{2}} f{\left(x \right)} = 0$$
(the second derivative equals zero),
the roots of this equation will be the inflection points for the specified function graph:
$$\frac{d^{2}}{d x^{2}} f{\left(x \right)} = $$
the second derivative$$\frac{2 \cos{\left(\frac{1}{x} \right)} - \frac{\sin{\left(\frac{1}{x} \right)}}{x}}{x^{3}} = 0$$
Solve this equationThe roots of this equation
$$x_{1} = 33124.297012115$$
$$x_{2} = 39904.771377312$$
$$x_{3} = 14479.7313150492$$
$$x_{4} = 21259.0191811792$$
$$x_{5} = -36383.2913419629$$
$$x_{6} = -27060.3085181287$$
$$x_{7} = -18585.4480940284$$
$$x_{8} = 28886.5862895034$$
$$x_{9} = 25496.4920696083$$
$$x_{10} = -32145.5241220507$$
$$x_{11} = 17869.2283625365$$
$$x_{12} = -31297.9789349291$$
$$x_{13} = 19564.09661214$$
$$x_{14} = 15327.0673496263$$
$$x_{15} = -39773.5440970563$$
$$x_{16} = 38209.640819107$$
$$x_{17} = -14348.5424650725$$
$$x_{18} = -38925.9782260908$$
$$x_{19} = -37230.8517263672$$
$$x_{20} = -25365.273191964$$
$$x_{21} = 20411.5519538498$$
$$x_{22} = -12653.9899632038$$
$$x_{23} = -19432.887686874$$
$$x_{24} = -17738.0242579883$$
$$x_{25} = 11937.9523841008$$
$$x_{26} = -40621.1115695252$$
$$x_{27} = 41599.9082873259$$
$$x_{28} = -11806.7845665482$$
$$x_{29} = 23801.4794641224$$
$$x_{30} = 16174.4315462694$$
$$x_{31} = 36514.5174977468$$
$$x_{32} = 32276.7483423665$$
$$x_{33} = -33840.6233739026$$
$$x_{34} = -26212.7880538116$$
$$x_{35} = -32993.0723444395$$
$$x_{36} = 42447.4788863631$$
$$x_{37} = 37362.078192229$$
$$x_{38} = 24648.982396646$$
$$x_{39} = -24517.764514177$$
$$x_{40} = -13501.2455714192$$
$$x_{41} = -41468.6805452608$$
$$x_{42} = -21975.2827488203$$
$$x_{43} = 33971.8484557919$$
$$x_{44} = -20280.3410578956$$
$$x_{45} = -21127.8065465298$$
$$x_{46} = -15195.8737165349$$
$$x_{47} = -42316.2509339008$$
$$x_{48} = -34688.1770045647$$
$$x_{49} = -16890.6185554691$$
$$x_{50} = 18716.6547734102$$
$$x_{51} = -30450.4370366936$$
$$x_{52} = 13632.4287111505$$
$$x_{53} = -38078.4140636161$$
$$x_{54} = 28039.0554132717$$
$$x_{55} = 17021.8196886792$$
$$x_{56} = 22953.9840195429$$
$$x_{57} = 35666.9588734903$$
$$x_{58} = 30581.6602478055$$
$$x_{59} = 27191.5291133465$$
$$x_{60} = -22822.7684696829$$
$$x_{61} = 29734.1213504079$$
$$x_{62} = 39057.2052525216$$
$$x_{63} = -23670.2626854463$$
$$x_{64} = 22106.496925216$$
$$x_{65} = -29602.8987100326$$
$$x_{66} = -28755.3642709925$$
$$x_{67} = -16043.2338667424$$
$$x_{68} = 31429.2026711056$$
$$x_{69} = 26344.0078318137$$
$$x_{70} = -35535.7330502043$$
$$x_{71} = 12785.166209279$$
$$x_{72} = 40752.3390879025$$
$$x_{73} = 34819.4024707177$$
$$x_{74} = -27907.8340740483$$
You also need to calculate the limits of y '' for arguments seeking to indeterminate points of a function:
Points where there is an indetermination:
$$x_{1} = 0$$
True
True
- the limits are not equal, so
$$x_{1} = 0$$
- is an inflection point
Сonvexity and concavity intervals:Let’s find the intervals where the function is convex or concave, for this look at the behaviour of the function at the inflection points:
Have no bends at the whole real axis