Integral of sin(mx) dx
The solution
The answer (Indefinite)
[src]
/ //-cos(m*x) \
| ||---------- for m != 0|
| sin(m*x) dx = C + |< m |
| || |
/ \\ 0 otherwise /
$$\int \sin{\left(m x \right)}\, dx = C + \begin{cases} - \frac{\cos{\left(m x \right)}}{m} & \text{for}\: m \neq 0 \\0 & \text{otherwise} \end{cases}$$
/1 cos(m)
|- - ------ for And(m > -oo, m < oo, m != 0)
$$\begin{cases} - \frac{\cos{\left(m \right)}}{m} + \frac{1}{m} & \text{for}\: m > -\infty \wedge m < \infty \wedge m \neq 0 \\0 & \text{otherwise} \end{cases}$$
=
/1 cos(m)
|- - ------ for And(m > -oo, m < oo, m != 0)
$$\begin{cases} - \frac{\cos{\left(m \right)}}{m} + \frac{1}{m} & \text{for}\: m > -\infty \wedge m < \infty \wedge m \neq 0 \\0 & \text{otherwise} \end{cases}$$
Piecewise((1/m - cos(m)/m, (m > -oo)∧(m < oo)∧(Ne(m, 0))), (0, True))
Use the examples entering the upper and lower limits of integration.