Mister Exam

Integral of sin(mx) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1            
  /            
 |             
 |  sin(m*x) dx
 |             
/              
0              
$$\int\limits_{0}^{1} \sin{\left(m x \right)}\, dx$$
Integral(sin(m*x), (x, 0, 1))
The answer (Indefinite) [src]
  /                  //-cos(m*x)             \
 |                   ||----------  for m != 0|
 | sin(m*x) dx = C + |<    m                 |
 |                   ||                      |
/                    \\    0       otherwise /
$$\int \sin{\left(m x \right)}\, dx = C + \begin{cases} - \frac{\cos{\left(m x \right)}}{m} & \text{for}\: m \neq 0 \\0 & \text{otherwise} \end{cases}$$
The answer [src]
/1   cos(m)                                  
|- - ------  for And(m > -oo, m < oo, m != 0)

            
$$\begin{cases} - \frac{\cos{\left(m \right)}}{m} + \frac{1}{m} & \text{for}\: m > -\infty \wedge m < \infty \wedge m \neq 0 \\0 & \text{otherwise} \end{cases}$$
=
=
/1   cos(m)                                  
|- - ------  for And(m > -oo, m < oo, m != 0)

            
$$\begin{cases} - \frac{\cos{\left(m \right)}}{m} + \frac{1}{m} & \text{for}\: m > -\infty \wedge m < \infty \wedge m \neq 0 \\0 & \text{otherwise} \end{cases}$$
Piecewise((1/m - cos(m)/m, (m > -oo)∧(m < oo)∧(Ne(m, 0))), (0, True))

    Use the examples entering the upper and lower limits of integration.