Integral of x*sin(m*x/a) dx
The solution
The answer (Indefinite)
[src]
// 0 for m = 0\
|| |
/ || // /m*x\ \ | // 0 for m = 0\
| || ||a*sin|---| | | || |
| /m*x\ || || \ a / m | | || /m*x\ |
| x*sin|---| dx = C - |<-a*|<---------- for - != 0| | + x*|<-a*cos|---| |
| \ a / || || m a | | || \ a / |
| || || | | ||------------ otherwise|
/ || \\ x otherwise / | \\ m /
||----------------------------- otherwise|
\\ m /
$$\int x \sin{\left(\frac{m x}{a} \right)}\, dx = C + x \left(\begin{cases} 0 & \text{for}\: m = 0 \\- \frac{a \cos{\left(\frac{m x}{a} \right)}}{m} & \text{otherwise} \end{cases}\right) - \begin{cases} 0 & \text{for}\: m = 0 \\- \frac{a \left(\begin{cases} \frac{a \sin{\left(\frac{m x}{a} \right)}}{m} & \text{for}\: \frac{m}{a} \neq 0 \\x & \text{otherwise} \end{cases}\right)}{m} & \text{otherwise} \end{cases}$$
/ 2 2
|a *sin(m) a *cos(m)
|--------- - --------- for And(m > -oo, m < oo, m != 0)
< 2 m
| m
|
\ 0 otherwise
$$\begin{cases} - \frac{a^{2} \cos{\left(m \right)}}{m} + \frac{a^{2} \sin{\left(m \right)}}{m^{2}} & \text{for}\: m > -\infty \wedge m < \infty \wedge m \neq 0 \\0 & \text{otherwise} \end{cases}$$
=
/ 2 2
|a *sin(m) a *cos(m)
|--------- - --------- for And(m > -oo, m < oo, m != 0)
< 2 m
| m
|
\ 0 otherwise
$$\begin{cases} - \frac{a^{2} \cos{\left(m \right)}}{m} + \frac{a^{2} \sin{\left(m \right)}}{m^{2}} & \text{for}\: m > -\infty \wedge m < \infty \wedge m \neq 0 \\0 & \text{otherwise} \end{cases}$$
Piecewise((a^2*sin(m)/m^2 - a^2*cos(m)/m, (m > -oo)∧(m < oo)∧(Ne(m, 0))), (0, True))
Use the examples entering the upper and lower limits of integration.