a / | | /m*x\ | x*sin|---| dx | \ a / | / 0
Integral(x*sin((m*x)/a), (x, 0, a))
// 0 for m = 0\
|| |
/ || // /m*x\ \ | // 0 for m = 0\
| || ||a*sin|---| | | || |
| /m*x\ || || \ a / m | | || /m*x\ |
| x*sin|---| dx = C - |<-a*|<---------- for - != 0| | + x*|<-a*cos|---| |
| \ a / || || m a | | || \ a / |
| || || | | ||------------ otherwise|
/ || \\ x otherwise / | \\ m /
||----------------------------- otherwise|
\\ m /
/ 2 2 |a *sin(m) a *cos(m) |--------- - --------- for And(m > -oo, m < oo, m != 0) < 2 m | m | \ 0 otherwise
=
/ 2 2 |a *sin(m) a *cos(m) |--------- - --------- for And(m > -oo, m < oo, m != 0) < 2 m | m | \ 0 otherwise
Piecewise((a^2*sin(m)/m^2 - a^2*cos(m)/m, (m > -oo)∧(m < oo)∧(Ne(m, 0))), (0, True))
Use the examples entering the upper and lower limits of integration.