Mister Exam

Integral of xsinmx dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
 pi              
  /              
 |               
 |  x*sin(m*x) dx
 |               
/                
-pi              
$$\int\limits_{- \pi}^{\pi} x \sin{\left(m x \right)}\, dx$$
Integral(x*sin(m*x), (x, -pi, pi))
The answer (Indefinite) [src]
                       //            0              for m = 0\                             
                       ||                                    |                             
  /                    || //sin(m*x)            \            |     //    0       for m = 0\
 |                     || ||--------  for m != 0|            |     ||                     |
 | x*sin(m*x) dx = C - |<-|<   m                |            | + x*|<-cos(m*x)            |
 |                     || ||                    |            |     ||----------  otherwise|
/                      || \\   x      otherwise /            |     \\    m                /
                       ||-------------------------  otherwise|                             
                       \\            m                       /                             
$$\int x \sin{\left(m x \right)}\, dx = C + x \left(\begin{cases} 0 & \text{for}\: m = 0 \\- \frac{\cos{\left(m x \right)}}{m} & \text{otherwise} \end{cases}\right) - \begin{cases} 0 & \text{for}\: m = 0 \\- \frac{\begin{cases} \frac{\sin{\left(m x \right)}}{m} & \text{for}\: m \neq 0 \\x & \text{otherwise} \end{cases}}{m} & \text{otherwise} \end{cases}$$
The answer [src]
/2*sin(pi*m)   2*pi*cos(pi*m)                                  
|----------- - --------------  for And(m > -oo, m < oo, m != 0)
|      2             m                                         
<     m                                                        
|                                                              
|             0                           otherwise            
\                                                              
$$\begin{cases} - \frac{2 \pi \cos{\left(\pi m \right)}}{m} + \frac{2 \sin{\left(\pi m \right)}}{m^{2}} & \text{for}\: m > -\infty \wedge m < \infty \wedge m \neq 0 \\0 & \text{otherwise} \end{cases}$$
=
=
/2*sin(pi*m)   2*pi*cos(pi*m)                                  
|----------- - --------------  for And(m > -oo, m < oo, m != 0)
|      2             m                                         
<     m                                                        
|                                                              
|             0                           otherwise            
\                                                              
$$\begin{cases} - \frac{2 \pi \cos{\left(\pi m \right)}}{m} + \frac{2 \sin{\left(\pi m \right)}}{m^{2}} & \text{for}\: m > -\infty \wedge m < \infty \wedge m \neq 0 \\0 & \text{otherwise} \end{cases}$$
Piecewise((2*sin(pi*m)/m^2 - 2*pi*cos(pi*m)/m, (m > -oo)∧(m < oo)∧(Ne(m, 0))), (0, True))

    Use the examples entering the upper and lower limits of integration.