Mister Exam

Other calculators

Integral of sin(ln(x))/sqrt(x) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
 oo               
  /               
 |                
 |  sin(log(x))   
 |  ----------- dx
 |       ___      
 |     \/ x       
 |                
/                 
0                 
$$\int\limits_{0}^{\infty} \frac{\sin{\left(\log{\left(x \right)} \right)}}{\sqrt{x}}\, dx$$
Integral(sin(log(x))/(sqrt(x)), (x, 0, oo))
Detail solution
  1. Let .

    Then let and substitute :

    1. Use integration by parts, noting that the integrand eventually repeats itself.

      1. For the integrand :

        Let and let .

        Then .

      2. For the integrand :

        Let and let .

        Then .

      3. Notice that the integrand has repeated itself, so move it to one side:

        Therefore,

    Now substitute back in:

  2. Now simplify:

  3. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                                              
 |                          ___                   ___            
 | sin(log(x))          4*\/ x *cos(log(x))   2*\/ x *sin(log(x))
 | ----------- dx = C - ------------------- + -------------------
 |      ___                      5                     5         
 |    \/ x                                                       
 |                                                               
/                                                                
$$\int \frac{\sin{\left(\log{\left(x \right)} \right)}}{\sqrt{x}}\, dx = C + \frac{2 \sqrt{x} \sin{\left(\log{\left(x \right)} \right)}}{5} - \frac{4 \sqrt{x} \cos{\left(\log{\left(x \right)} \right)}}{5}$$
The answer [src]
<-oo, oo>
$$\left\langle -\infty, \infty\right\rangle$$
=
=
<-oo, oo>
$$\left\langle -\infty, \infty\right\rangle$$

    Use the examples entering the upper and lower limits of integration.