1 / | | 1 | 1*-------------- dx | ___________ | / 2 | \/ 25*x + 4 | / 0
TrigSubstitutionRule(theta=_theta, func=2*tan(_theta)/5, rewritten=sec(_theta)/5, substep=ConstantTimesRule(constant=1/5, other=sec(_theta), substep=RewriteRule(rewritten=(tan(_theta)*sec(_theta) + sec(_theta)**2)/(tan(_theta) + sec(_theta)), substep=AlternativeRule(alternatives=[URule(u_var=_u, u_func=tan(_theta) + sec(_theta), constant=1, substep=ReciprocalRule(func=_u, context=1/_u, symbol=_u), context=(tan(_theta)*sec(_theta) + sec(_theta)**2)/(tan(_theta) + sec(_theta)), symbol=_theta)], context=(tan(_theta)*sec(_theta) + sec(_theta)**2)/(tan(_theta) + sec(_theta)), symbol=_theta), context=sec(_theta), symbol=_theta), context=sec(_theta)/5, symbol=_theta), restriction=True, context=1/sqrt(25*x**2 + 4), symbol=x)
Now simplify:
Add the constant of integration:
The answer is:
/ ___________ \
| / 2 |
/ | / 25*x 5*x|
| log| / 1 + ----- + ---|
| 1 \\/ 4 2 /
| 1*-------------- dx = C + ---------------------------
| ___________ 5
| / 2
| \/ 25*x + 4
|
/
asinh(5/2)
----------
5
=
asinh(5/2)
----------
5
Use the examples entering the upper and lower limits of integration.