Mister Exam

Other calculators

Integral of abs(sin(lnx)/sqrt(x)) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
 oo                 
  /                 
 |                  
 |  |sin(log(x))|   
 |  |-----------| dx
 |  |     ___   |   
 |  |   \/ x    |   
 |                  
/                   
2                   
$$\int\limits_{2}^{\infty} \left|{\frac{\sin{\left(\log{\left(x \right)} \right)}}{\sqrt{x}}}\right|\, dx$$
Integral(Abs(sin(log(x))/sqrt(x)), (x, 2, oo))
The answer (Indefinite) [src]
  /                         /                
 |                         |                 
 | |sin(log(x))|           | |sin(log(x))|   
 | |-----------| dx = C +  | ------------- dx
 | |     ___   |           |    |  ___|      
 | |   \/ x    |           |    |\/ x |      
 |                         |                 
/                         /                  
$$\int \left|{\frac{\sin{\left(\log{\left(x \right)} \right)}}{\sqrt{x}}}\right|\, dx = C + \int \frac{\left|{\sin{\left(\log{\left(x \right)} \right)}}\right|}{\left|{\sqrt{x}}\right|}\, dx$$
The answer [src]
 oo                 
  /                 
 |                  
 |  |sin(log(x))|   
 |  ------------- dx
 |     |  ___|      
 |     |\/ x |      
 |                  
/                   
2                   
$$\int\limits_{2}^{\infty} \frac{\left|{\sin{\left(\log{\left(x \right)} \right)}}\right|}{\left|{\sqrt{x}}\right|}\, dx$$
=
=
 oo                 
  /                 
 |                  
 |  |sin(log(x))|   
 |  ------------- dx
 |     |  ___|      
 |     |\/ x |      
 |                  
/                   
2                   
$$\int\limits_{2}^{\infty} \frac{\left|{\sin{\left(\log{\left(x \right)} \right)}}\right|}{\left|{\sqrt{x}}\right|}\, dx$$
Integral(Abs(sin(log(x)))/Abs(sqrt(x)), (x, 2, oo))

    Use the examples entering the upper and lower limits of integration.