Mister Exam

Integral of sin10x dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  0             
  /             
 |              
 |  sin(10*x) dx
 |              
/               
0               
00sin(10x)dx\int\limits_{0}^{0} \sin{\left(10 x \right)}\, dx
Detail solution
  1. Let u=10xu = 10 x.

    Then let du=10dxdu = 10 dx and substitute du10\frac{du}{10}:

    sin(u)100du\int \frac{\sin{\left(u \right)}}{100}\, du

    1. The integral of a constant times a function is the constant times the integral of the function:

      sin(u)10du=sin(u)du10\int \frac{\sin{\left(u \right)}}{10}\, du = \frac{\int \sin{\left(u \right)}\, du}{10}

      1. The integral of sine is negative cosine:

        sin(u)du=cos(u)\int \sin{\left(u \right)}\, du = - \cos{\left(u \right)}

      So, the result is: cos(u)10- \frac{\cos{\left(u \right)}}{10}

    Now substitute uu back in:

    cos(10x)10- \frac{\cos{\left(10 x \right)}}{10}

  2. Add the constant of integration:

    cos(10x)10+constant- \frac{\cos{\left(10 x \right)}}{10}+ \mathrm{constant}


The answer is:

cos(10x)10+constant- \frac{\cos{\left(10 x \right)}}{10}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                            
 |                    cos(10*x)
 | sin(10*x) dx = C - ---------
 |                        10   
/                              
cos(10x)10-{{\cos \left(10\,x\right)}\over{10}}
The graph
0.001.000.100.200.300.400.500.600.700.800.90-0.20.1
The answer [src]
0
00
=
=
0
00
Numerical answer [src]
0.0
0.0
The graph
Integral of sin10x dx

    Use the examples entering the upper and lower limits of integration.