Mister Exam

Other calculators

Integral of 1/(2x^2-5x+7) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                  
  /                  
 |                   
 |        1          
 |  -------------- dx
 |     2             
 |  2*x  - 5*x + 7   
 |                   
/                    
0                    
$$\int\limits_{0}^{1} \frac{1}{\left(2 x^{2} - 5 x\right) + 7}\, dx$$
Integral(1/(2*x^2 - 5*x + 7), (x, 0, 1))
Detail solution
We have the integral:
  /                 
 |                  
 |       1          
 | -------------- dx
 |    2             
 | 2*x  - 5*x + 7   
 |                  
/                   
Rewrite the integrand
      1                           1                  
-------------- = ------------------------------------
   2                  /                        2    \
2*x  - 5*x + 7        |/     ____         ____\     |
                      ||-4*\/ 31      5*\/ 31 |     |
                 31/8*||---------*x + --------|  + 1|
                      \\    31           31   /     /
or
  /                   
 |                    
 |       1            
 | -------------- dx  
 |    2              =
 | 2*x  - 5*x + 7     
 |                    
/                     
  
    /                                
   |                                 
   |               1                 
8* | ----------------------------- dx
   |                         2       
   | /     ____         ____\        
   | |-4*\/ 31      5*\/ 31 |        
   | |---------*x + --------|  + 1   
   | \    31           31   /        
   |                                 
  /                                  
-------------------------------------
                  31                 
In the integral
    /                                
   |                                 
   |               1                 
8* | ----------------------------- dx
   |                         2       
   | /     ____         ____\        
   | |-4*\/ 31      5*\/ 31 |        
   | |---------*x + --------|  + 1   
   | \    31           31   /        
   |                                 
  /                                  
-------------------------------------
                  31                 
do replacement
        ____         ____
    5*\/ 31    4*x*\/ 31 
v = -------- - ----------
       31          31    
then
the integral =
    /                     
   |                      
   |   1                  
8* | ------ dv            
   |      2               
   | 1 + v                
   |                      
  /              8*atan(v)
-------------- = ---------
      31             31   
do backward replacement
    /                                                                         
   |                                                                          
   |               1                                                          
8* | ----------------------------- dx                                         
   |                         2                                                
   | /     ____         ____\                                                 
   | |-4*\/ 31      5*\/ 31 |                                                 
   | |---------*x + --------|  + 1                   /      ____         ____\
   | \    31           31   /               ____     |  5*\/ 31    4*x*\/ 31 |
   |                                    2*\/ 31 *atan|- -------- + ----------|
  /                                                  \     31          31    /
------------------------------------- = --------------------------------------
                  31                                      31                  
Solution is:
                 /      ____         ____\
        ____     |  5*\/ 31    4*x*\/ 31 |
    2*\/ 31 *atan|- -------- + ----------|
                 \     31          31    /
C + --------------------------------------
                      31                  
The answer (Indefinite) [src]
                                        /    ____           \
  /                            ____     |4*\/ 31 *(-5/4 + x)|
 |                         2*\/ 31 *atan|-------------------|
 |       1                              \         31        /
 | -------------- dx = C + ----------------------------------
 |    2                                    31                
 | 2*x  - 5*x + 7                                            
 |                                                           
/                                                            
$$\int \frac{1}{\left(2 x^{2} - 5 x\right) + 7}\, dx = C + \frac{2 \sqrt{31} \operatorname{atan}{\left(\frac{4 \sqrt{31} \left(x - \frac{5}{4}\right)}{31} \right)}}{31}$$
The graph
The answer [src]
               /  ____\                /    ____\
      ____     |\/ 31 |       ____     |5*\/ 31 |
  2*\/ 31 *atan|------|   2*\/ 31 *atan|--------|
               \  31  /                \   31   /
- --------------------- + -----------------------
            31                       31          
$$- \frac{2 \sqrt{31} \operatorname{atan}{\left(\frac{\sqrt{31}}{31} \right)}}{31} + \frac{2 \sqrt{31} \operatorname{atan}{\left(\frac{5 \sqrt{31}}{31} \right)}}{31}$$
=
=
               /  ____\                /    ____\
      ____     |\/ 31 |       ____     |5*\/ 31 |
  2*\/ 31 *atan|------|   2*\/ 31 *atan|--------|
               \  31  /                \   31   /
- --------------------- + -----------------------
            31                       31          
$$- \frac{2 \sqrt{31} \operatorname{atan}{\left(\frac{\sqrt{31}}{31} \right)}}{31} + \frac{2 \sqrt{31} \operatorname{atan}{\left(\frac{5 \sqrt{31}}{31} \right)}}{31}$$
-2*sqrt(31)*atan(sqrt(31)/31)/31 + 2*sqrt(31)*atan(5*sqrt(31)/31)/31
Numerical answer [src]
0.199007381921531
0.199007381921531

    Use the examples entering the upper and lower limits of integration.