Mister Exam

Other calculators

Integral of cosh(2x^2) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1              
  /              
 |               
 |      /   2\   
 |  cosh\2*x / dx
 |               
/                
0                
$$\int\limits_{0}^{1} \cosh{\left(2 x^{2} \right)}\, dx$$
Integral(cosh(2*x^2), (x, 0, 1))
The answer (Indefinite) [src]
                                       /     pi*I\           
                               -pi*I   |     ----|           
                               ------  |      4  |           
                         ____    4     |2*x*e    |           
  /                    \/ pi *e      *C|---------|*Gamma(1/4)
 |                                     |    ____ |           
 |     /   2\                          \  \/ pi  /           
 | cosh\2*x / dx = C + --------------------------------------
 |                                  8*Gamma(5/4)             
/                                                            
$$\int \cosh{\left(2 x^{2} \right)}\, dx = C + \frac{\sqrt{\pi} e^{- \frac{i \pi}{4}} C\left(\frac{2 x e^{\frac{i \pi}{4}}}{\sqrt{\pi}}\right) \Gamma\left(\frac{1}{4}\right)}{8 \Gamma\left(\frac{5}{4}\right)}$$
The graph
The answer [src]
                /   pi*I\           
        -pi*I   |   ----|           
        ------  |    4  |           
  ____    4     |2*e    |           
\/ pi *e      *C|-------|*Gamma(1/4)
                |   ____|           
                \ \/ pi /           
------------------------------------
            8*Gamma(5/4)            
$$\frac{\sqrt{\pi} e^{- \frac{i \pi}{4}} C\left(\frac{2 e^{\frac{i \pi}{4}}}{\sqrt{\pi}}\right) \Gamma\left(\frac{1}{4}\right)}{8 \Gamma\left(\frac{5}{4}\right)}$$
=
=
                /   pi*I\           
        -pi*I   |   ----|           
        ------  |    4  |           
  ____    4     |2*e    |           
\/ pi *e      *C|-------|*Gamma(1/4)
                |   ____|           
                \ \/ pi /           
------------------------------------
            8*Gamma(5/4)            
$$\frac{\sqrt{\pi} e^{- \frac{i \pi}{4}} C\left(\frac{2 e^{\frac{i \pi}{4}}}{\sqrt{\pi}}\right) \Gamma\left(\frac{1}{4}\right)}{8 \Gamma\left(\frac{5}{4}\right)}$$
sqrt(pi)*exp(-pi*i/4)*fresnelc(2*exp(pi*i/4)/sqrt(pi))*gamma(1/4)/(8*gamma(5/4))
Numerical answer [src]
1.48129894973326
1.48129894973326

    Use the examples entering the upper and lower limits of integration.