Mister Exam

Other calculators

Integral of sin(log2(x))/x dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1               
  /               
 |                
 |     /log(x)\   
 |  sin|------|   
 |     \log(2)/   
 |  ----------- dx
 |       x        
 |                
/                 
0                 
$$\int\limits_{0}^{1} \frac{\sin{\left(\frac{\log{\left(x \right)}}{\log{\left(2 \right)}} \right)}}{x}\, dx$$
Integral(sin(log(x)/log(2))/x, (x, 0, 1))
Detail solution
  1. There are multiple ways to do this integral.

    Method #1

    1. Let .

      Then let and substitute :

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. The integral of sine is negative cosine:

        So, the result is:

      Now substitute back in:

    Method #2

    1. Let .

      Then let and substitute :

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. Let .

          Then let and substitute :

          1. The integral of a constant times a function is the constant times the integral of the function:

            1. The integral of sine is negative cosine:

            So, the result is:

          Now substitute back in:

        So, the result is:

      Now substitute back in:

  2. Now simplify:

  3. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                       
 |                                        
 |    /log(x)\                            
 | sin|------|                            
 |    \log(2)/             /log(x)\       
 | ----------- dx = C - cos|------|*log(2)
 |      x                  \log(2)/       
 |                                        
/                                         
$$-\log 2\,\cos \left({{\log x}\over{\log 2}}\right)$$
The answer [src]
-log(2) - <-1, 1>*log(2)
$$\int_{0}^{1}{{{\sin \left({{\log x}\over{\log 2}}\right)}\over{x}} \;dx}$$
=
=
-log(2) - <-1, 1>*log(2)
$$- \log{\left(2 \right)} \left\langle -1, 1\right\rangle - \log{\left(2 \right)}$$
Numerical answer [src]
-0.177999323190111
-0.177999323190111

    Use the examples entering the upper and lower limits of integration.