Mister Exam

Other calculators

Integral of sin(log2(x))/x dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1               
  /               
 |                
 |     /log(x)\   
 |  sin|------|   
 |     \log(2)/   
 |  ----------- dx
 |       x        
 |                
/                 
0                 
01sin(log(x)log(2))xdx\int\limits_{0}^{1} \frac{\sin{\left(\frac{\log{\left(x \right)}}{\log{\left(2 \right)}} \right)}}{x}\, dx
Integral(sin(log(x)/log(2))/x, (x, 0, 1))
Detail solution
  1. There are multiple ways to do this integral.

    Method #1

    1. Let u=log(x)log(2)u = \frac{\log{\left(x \right)}}{\log{\left(2 \right)}}.

      Then let du=dxxlog(2)du = \frac{dx}{x \log{\left(2 \right)}} and substitute dulog(2)du \log{\left(2 \right)}:

      log(2)2sin(u)du\int \log{\left(2 \right)}^{2} \sin{\left(u \right)}\, du

      1. The integral of a constant times a function is the constant times the integral of the function:

        log(2)sin(u)du=log(2)sin(u)du\int \log{\left(2 \right)} \sin{\left(u \right)}\, du = \log{\left(2 \right)} \int \sin{\left(u \right)}\, du

        1. The integral of sine is negative cosine:

          sin(u)du=cos(u)\int \sin{\left(u \right)}\, du = - \cos{\left(u \right)}

        So, the result is: log(2)cos(u)- \log{\left(2 \right)} \cos{\left(u \right)}

      Now substitute uu back in:

      log(2)cos(log(x)log(2))- \log{\left(2 \right)} \cos{\left(\frac{\log{\left(x \right)}}{\log{\left(2 \right)}} \right)}

    Method #2

    1. Let u=1xu = \frac{1}{x}.

      Then let du=dxx2du = - \frac{dx}{x^{2}} and substitute du- du:

      sin(log(1u)log(2))udu\int \frac{\sin{\left(\frac{\log{\left(\frac{1}{u} \right)}}{\log{\left(2 \right)}} \right)}}{u}\, du

      1. The integral of a constant times a function is the constant times the integral of the function:

        (sin(log(1u)log(2))u)du=sin(log(1u)log(2))udu\int \left(- \frac{\sin{\left(\frac{\log{\left(\frac{1}{u} \right)}}{\log{\left(2 \right)}} \right)}}{u}\right)\, du = - \int \frac{\sin{\left(\frac{\log{\left(\frac{1}{u} \right)}}{\log{\left(2 \right)}} \right)}}{u}\, du

        1. Let u=log(1u)log(2)u = \frac{\log{\left(\frac{1}{u} \right)}}{\log{\left(2 \right)}}.

          Then let du=duulog(2)du = - \frac{du}{u \log{\left(2 \right)}} and substitute dulog(2)- du \log{\left(2 \right)}:

          log(2)2sin(u)du\int \log{\left(2 \right)}^{2} \sin{\left(u \right)}\, du

          1. The integral of a constant times a function is the constant times the integral of the function:

            (log(2)sin(u))du=log(2)sin(u)du\int \left(- \log{\left(2 \right)} \sin{\left(u \right)}\right)\, du = - \log{\left(2 \right)} \int \sin{\left(u \right)}\, du

            1. The integral of sine is negative cosine:

              sin(u)du=cos(u)\int \sin{\left(u \right)}\, du = - \cos{\left(u \right)}

            So, the result is: log(2)cos(u)\log{\left(2 \right)} \cos{\left(u \right)}

          Now substitute uu back in:

          log(2)cos(log(1u)log(2))\log{\left(2 \right)} \cos{\left(\frac{\log{\left(\frac{1}{u} \right)}}{\log{\left(2 \right)}} \right)}

        So, the result is: log(2)cos(log(1u)log(2))- \log{\left(2 \right)} \cos{\left(\frac{\log{\left(\frac{1}{u} \right)}}{\log{\left(2 \right)}} \right)}

      Now substitute uu back in:

      log(2)cos(log(x)log(2))- \log{\left(2 \right)} \cos{\left(\frac{\log{\left(x \right)}}{\log{\left(2 \right)}} \right)}

  2. Now simplify:

    log(2)cos(log(x)log(2))- \log{\left(2 \right)} \cos{\left(\frac{\log{\left(x \right)}}{\log{\left(2 \right)}} \right)}

  3. Add the constant of integration:

    log(2)cos(log(x)log(2))+constant- \log{\left(2 \right)} \cos{\left(\frac{\log{\left(x \right)}}{\log{\left(2 \right)}} \right)}+ \mathrm{constant}


The answer is:

log(2)cos(log(x)log(2))+constant- \log{\left(2 \right)} \cos{\left(\frac{\log{\left(x \right)}}{\log{\left(2 \right)}} \right)}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                                       
 |                                        
 |    /log(x)\                            
 | sin|------|                            
 |    \log(2)/             /log(x)\       
 | ----------- dx = C - cos|------|*log(2)
 |      x                  \log(2)/       
 |                                        
/                                         
log2cos(logxlog2)-\log 2\,\cos \left({{\log x}\over{\log 2}}\right)
The answer [src]
-log(2) - <-1, 1>*log(2)
01sin(logxlog2)x  dx\int_{0}^{1}{{{\sin \left({{\log x}\over{\log 2}}\right)}\over{x}} \;dx}
=
=
-log(2) - <-1, 1>*log(2)
log(2)1,1log(2)- \log{\left(2 \right)} \left\langle -1, 1\right\rangle - \log{\left(2 \right)}
Numerical answer [src]
-0.177999323190111
-0.177999323190111

    Use the examples entering the upper and lower limits of integration.