Mister Exam

Integral of sen4x dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1            
  /            
 |             
 |  sin(4*x) dx
 |             
/              
0              
01sin(4x)dx\int\limits_{0}^{1} \sin{\left(4 x \right)}\, dx
Integral(sin(4*x), (x, 0, 1))
Detail solution
  1. Let u=4xu = 4 x.

    Then let du=4dxdu = 4 dx and substitute du4\frac{du}{4}:

    sin(u)4du\int \frac{\sin{\left(u \right)}}{4}\, du

    1. The integral of a constant times a function is the constant times the integral of the function:

      sin(u)du=sin(u)du4\int \sin{\left(u \right)}\, du = \frac{\int \sin{\left(u \right)}\, du}{4}

      1. The integral of sine is negative cosine:

        sin(u)du=cos(u)\int \sin{\left(u \right)}\, du = - \cos{\left(u \right)}

      So, the result is: cos(u)4- \frac{\cos{\left(u \right)}}{4}

    Now substitute uu back in:

    cos(4x)4- \frac{\cos{\left(4 x \right)}}{4}

  2. Add the constant of integration:

    cos(4x)4+constant- \frac{\cos{\left(4 x \right)}}{4}+ \mathrm{constant}


The answer is:

cos(4x)4+constant- \frac{\cos{\left(4 x \right)}}{4}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                          
 |                   cos(4*x)
 | sin(4*x) dx = C - --------
 |                      4    
/                            
sin(4x)dx=Ccos(4x)4\int \sin{\left(4 x \right)}\, dx = C - \frac{\cos{\left(4 x \right)}}{4}
The graph
0.001.000.100.200.300.400.500.600.700.800.902-2
The answer [src]
1   cos(4)
- - ------
4     4   
14cos(4)4\frac{1}{4} - \frac{\cos{\left(4 \right)}}{4}
=
=
1   cos(4)
- - ------
4     4   
14cos(4)4\frac{1}{4} - \frac{\cos{\left(4 \right)}}{4}
1/4 - cos(4)/4
Numerical answer [src]
0.413410905215903
0.413410905215903
The graph
Integral of sen4x dx

    Use the examples entering the upper and lower limits of integration.