Mister Exam

Other calculators

Integral of (-2/3)(sen(4x)dx) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1               
  /               
 |                
 |  -2*sin(4*x)   
 |  ----------- dx
 |       3        
 |                
/                 
0                 
01(2sin(4x)3)dx\int\limits_{0}^{1} \left(- \frac{2 \sin{\left(4 x \right)}}{3}\right)\, dx
Integral(-2*sin(4*x)/3, (x, 0, 1))
Detail solution
  1. The integral of a constant times a function is the constant times the integral of the function:

    (2sin(4x)3)dx=2sin(4x)dx3\int \left(- \frac{2 \sin{\left(4 x \right)}}{3}\right)\, dx = - \frac{2 \int \sin{\left(4 x \right)}\, dx}{3}

    1. Let u=4xu = 4 x.

      Then let du=4dxdu = 4 dx and substitute du4\frac{du}{4}:

      sin(u)4du\int \frac{\sin{\left(u \right)}}{4}\, du

      1. The integral of a constant times a function is the constant times the integral of the function:

        sin(u)du=sin(u)du4\int \sin{\left(u \right)}\, du = \frac{\int \sin{\left(u \right)}\, du}{4}

        1. The integral of sine is negative cosine:

          sin(u)du=cos(u)\int \sin{\left(u \right)}\, du = - \cos{\left(u \right)}

        So, the result is: cos(u)4- \frac{\cos{\left(u \right)}}{4}

      Now substitute uu back in:

      cos(4x)4- \frac{\cos{\left(4 x \right)}}{4}

    So, the result is: cos(4x)6\frac{\cos{\left(4 x \right)}}{6}

  2. Add the constant of integration:

    cos(4x)6+constant\frac{\cos{\left(4 x \right)}}{6}+ \mathrm{constant}


The answer is:

cos(4x)6+constant\frac{\cos{\left(4 x \right)}}{6}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                             
 |                              
 | -2*sin(4*x)          cos(4*x)
 | ----------- dx = C + --------
 |      3                  6    
 |                              
/                               
(2sin(4x)3)dx=C+cos(4x)6\int \left(- \frac{2 \sin{\left(4 x \right)}}{3}\right)\, dx = C + \frac{\cos{\left(4 x \right)}}{6}
The graph
0.001.000.100.200.300.400.500.600.700.800.901-1
The answer [src]
  1   cos(4)
- - + ------
  6     6   
16+cos(4)6- \frac{1}{6} + \frac{\cos{\left(4 \right)}}{6}
=
=
  1   cos(4)
- - + ------
  6     6   
16+cos(4)6- \frac{1}{6} + \frac{\cos{\left(4 \right)}}{6}
-1/6 + cos(4)/6
Numerical answer [src]
-0.275607270143935
-0.275607270143935

    Use the examples entering the upper and lower limits of integration.