Integral of (-2/3)(sen(4x)dx) dx
The solution
Detail solution
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−32sin(4x))dx=−32∫sin(4x)dx
-
Let u=4x.
Then let du=4dx and substitute 4du:
∫4sin(u)du
-
The integral of a constant times a function is the constant times the integral of the function:
∫sin(u)du=4∫sin(u)du
-
The integral of sine is negative cosine:
∫sin(u)du=−cos(u)
So, the result is: −4cos(u)
Now substitute u back in:
−4cos(4x)
So, the result is: 6cos(4x)
-
Add the constant of integration:
6cos(4x)+constant
The answer is:
6cos(4x)+constant
The answer (Indefinite)
[src]
/
|
| -2*sin(4*x) cos(4*x)
| ----------- dx = C + --------
| 3 6
|
/
∫(−32sin(4x))dx=C+6cos(4x)
The graph
1 cos(4)
- - + ------
6 6
−61+6cos(4)
=
1 cos(4)
- - + ------
6 6
−61+6cos(4)
Use the examples entering the upper and lower limits of integration.