Integral of ∫(sen^4)xcosxdx dx
The solution
The answer (Indefinite)
[src]
/
| 5 5 4 3 2
| 4 8*cos (x) x*sin (x) sin (x)*cos(x) 4*cos (x)*sin (x)
| sin (x)*x*cos(x) dx = C + --------- + --------- + -------------- + -----------------
| 75 5 5 15
/
∫xsin4(x)cos(x)dx=C+5xsin5(x)+5sin4(x)cos(x)+154sin2(x)cos3(x)+758cos5(x)
The graph
5 5 4 3 2
8 sin (1) 8*cos (1) sin (1)*cos(1) 4*cos (1)*sin (1)
- -- + ------- + --------- + -------------- + -----------------
75 5 75 5 15
−758+758cos5(1)+154sin2(1)cos3(1)+5sin4(1)cos(1)+5sin5(1)
=
5 5 4 3 2
8 sin (1) 8*cos (1) sin (1)*cos(1) 4*cos (1)*sin (1)
- -- + ------- + --------- + -------------- + -----------------
75 5 75 5 15
−758+758cos5(1)+154sin2(1)cos3(1)+5sin4(1)cos(1)+5sin5(1)
-8/75 + sin(1)^5/5 + 8*cos(1)^5/75 + sin(1)^4*cos(1)/5 + 4*cos(1)^3*sin(1)^2/15
Use the examples entering the upper and lower limits of integration.