Integral of -y dy
The solution
Detail solution
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−y)dy=−∫ydy
-
The integral of yn is n+1yn+1 when n=−1:
∫ydy=2y2
So, the result is: −2y2
-
Add the constant of integration:
−2y2+constant
The answer is:
−2y2+constant
The answer (Indefinite)
[src]
/ 2
| y
| -y dy = C - --
| 2
/
∫(−y)dy=C−2y2
The graph
Use the examples entering the upper and lower limits of integration.