Mister Exam

Integral of -y dy

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1      
  /      
 |       
 |  -y dy
 |       
/        
0        
01(y)dy\int\limits_{0}^{1} \left(- y\right)\, dy
Integral(-y, (y, 0, 1))
Detail solution
  1. The integral of a constant times a function is the constant times the integral of the function:

    (y)dy=ydy\int \left(- y\right)\, dy = - \int y\, dy

    1. The integral of yny^{n} is yn+1n+1\frac{y^{n + 1}}{n + 1} when n1n \neq -1:

      ydy=y22\int y\, dy = \frac{y^{2}}{2}

    So, the result is: y22- \frac{y^{2}}{2}

  2. Add the constant of integration:

    y22+constant- \frac{y^{2}}{2}+ \mathrm{constant}


The answer is:

y22+constant- \frac{y^{2}}{2}+ \mathrm{constant}

The answer (Indefinite) [src]
  /             2
 |             y 
 | -y dy = C - --
 |             2 
/                
(y)dy=Cy22\int \left(- y\right)\, dy = C - \frac{y^{2}}{2}
The graph
0.001.000.100.200.300.400.500.600.700.800.901-2
The answer [src]
-1/2
12- \frac{1}{2}
=
=
-1/2
12- \frac{1}{2}
-1/2
Numerical answer [src]
-0.5
-0.5
The graph
Integral of -y dy

    Use the examples entering the upper and lower limits of integration.