Mister Exam

Other calculators


(1+cos2x)/2

Integral of (1+cos2x)/2 dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                
  /                
 |                 
 |  1 + cos(2*x)   
 |  ------------ dx
 |       2         
 |                 
/                  
0                  
01cos(2x)+12dx\int\limits_{0}^{1} \frac{\cos{\left(2 x \right)} + 1}{2}\, dx
Integral((1 + cos(2*x))/2, (x, 0, 1))
Detail solution
  1. The integral of a constant times a function is the constant times the integral of the function:

    cos(2x)+12dx=(cos(2x)+1)dx2\int \frac{\cos{\left(2 x \right)} + 1}{2}\, dx = \frac{\int \left(\cos{\left(2 x \right)} + 1\right)\, dx}{2}

    1. Integrate term-by-term:

      1. Let u=2xu = 2 x.

        Then let du=2dxdu = 2 dx and substitute du2\frac{du}{2}:

        cos(u)4du\int \frac{\cos{\left(u \right)}}{4}\, du

        1. The integral of a constant times a function is the constant times the integral of the function:

          cos(u)2du=cos(u)du2\int \frac{\cos{\left(u \right)}}{2}\, du = \frac{\int \cos{\left(u \right)}\, du}{2}

          1. The integral of cosine is sine:

            cos(u)du=sin(u)\int \cos{\left(u \right)}\, du = \sin{\left(u \right)}

          So, the result is: sin(u)2\frac{\sin{\left(u \right)}}{2}

        Now substitute uu back in:

        sin(2x)2\frac{\sin{\left(2 x \right)}}{2}

      1. The integral of a constant is the constant times the variable of integration:

        1dx=x\int 1\, dx = x

      The result is: x+sin(2x)2x + \frac{\sin{\left(2 x \right)}}{2}

    So, the result is: x2+sin(2x)4\frac{x}{2} + \frac{\sin{\left(2 x \right)}}{4}

  2. Add the constant of integration:

    x2+sin(2x)4+constant\frac{x}{2} + \frac{\sin{\left(2 x \right)}}{4}+ \mathrm{constant}


The answer is:

x2+sin(2x)4+constant\frac{x}{2} + \frac{\sin{\left(2 x \right)}}{4}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                                  
 |                                   
 | 1 + cos(2*x)          x   sin(2*x)
 | ------------ dx = C + - + --------
 |      2                2      4    
 |                                   
/                                    
sin(2x)2+x2{{{{\sin \left(2\,x\right)}\over{2}}+x}\over{2}}
The graph
0.001.000.100.200.300.400.500.600.700.800.9002
The answer [src]
1   sin(2)
- + ------
2     4   
sin2+24{{\sin 2+2}\over{4}}
=
=
1   sin(2)
- + ------
2     4   
sin(2)4+12\frac{\sin{\left(2 \right)}}{4} + \frac{1}{2}
Numerical answer [src]
0.72732435670642
0.72732435670642
The graph
Integral of (1+cos2x)/2 dx

    Use the examples entering the upper and lower limits of integration.