Integral of (1+cos2x)/2 dx
The solution
Detail solution
-
The integral of a constant times a function is the constant times the integral of the function:
∫2cos(2x)+1dx=2∫(cos(2x)+1)dx
-
Integrate term-by-term:
-
Let u=2x.
Then let du=2dx and substitute 2du:
∫4cos(u)du
-
The integral of a constant times a function is the constant times the integral of the function:
∫2cos(u)du=2∫cos(u)du
-
The integral of cosine is sine:
∫cos(u)du=sin(u)
So, the result is: 2sin(u)
Now substitute u back in:
2sin(2x)
-
The integral of a constant is the constant times the variable of integration:
∫1dx=x
The result is: x+2sin(2x)
So, the result is: 2x+4sin(2x)
-
Add the constant of integration:
2x+4sin(2x)+constant
The answer is:
2x+4sin(2x)+constant
The answer (Indefinite)
[src]
/
|
| 1 + cos(2*x) x sin(2*x)
| ------------ dx = C + - + --------
| 2 2 4
|
/
22sin(2x)+x
The graph
4sin2+2
=
4sin(2)+21
Use the examples entering the upper and lower limits of integration.