Mister Exam

Other calculators

Integral of 1/((1+x)*sqrt(x+1)) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                     
  /                     
 |                      
 |          1           
 |  ----------------- dx
 |            _______   
 |  (1 + x)*\/ x + 1    
 |                      
/                       
0                       
011x+1(x+1)dx\int\limits_{0}^{1} \frac{1}{\sqrt{x + 1} \left(x + 1\right)}\, dx
Integral(1/((1 + x)*sqrt(x + 1)), (x, 0, 1))
Detail solution
  1. There are multiple ways to do this integral.

    Method #1

    1. Rewrite the integrand:

      1x+1(x+1)=1xx+1+x+1\frac{1}{\sqrt{x + 1} \left(x + 1\right)} = \frac{1}{x \sqrt{x + 1} + \sqrt{x + 1}}

    2. Let u=x+1u = \sqrt{x + 1}.

      Then let du=dx2x+1du = \frac{dx}{2 \sqrt{x + 1}} and substitute 2du2 du:

      2u2du\int \frac{2}{u^{2}}\, du

      1. The integral of a constant times a function is the constant times the integral of the function:

        1u2du=21u2du\int \frac{1}{u^{2}}\, du = 2 \int \frac{1}{u^{2}}\, du

        1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

          1u2du=1u\int \frac{1}{u^{2}}\, du = - \frac{1}{u}

        So, the result is: 2u- \frac{2}{u}

      Now substitute uu back in:

      2x+1- \frac{2}{\sqrt{x + 1}}

    Method #2

    1. Rewrite the integrand:

      1x+1(x+1)=1xx+1+x+1\frac{1}{\sqrt{x + 1} \left(x + 1\right)} = \frac{1}{x \sqrt{x + 1} + \sqrt{x + 1}}

    2. Let u=x+1u = \sqrt{x + 1}.

      Then let du=dx2x+1du = \frac{dx}{2 \sqrt{x + 1}} and substitute 2du2 du:

      2u2du\int \frac{2}{u^{2}}\, du

      1. The integral of a constant times a function is the constant times the integral of the function:

        1u2du=21u2du\int \frac{1}{u^{2}}\, du = 2 \int \frac{1}{u^{2}}\, du

        1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

          1u2du=1u\int \frac{1}{u^{2}}\, du = - \frac{1}{u}

        So, the result is: 2u- \frac{2}{u}

      Now substitute uu back in:

      2x+1- \frac{2}{\sqrt{x + 1}}

  2. Add the constant of integration:

    2x+1+constant- \frac{2}{\sqrt{x + 1}}+ \mathrm{constant}


The answer is:

2x+1+constant- \frac{2}{\sqrt{x + 1}}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                                    
 |                                     
 |         1                      2    
 | ----------------- dx = C - ---------
 |           _______            _______
 | (1 + x)*\/ x + 1           \/ 1 + x 
 |                                     
/                                      
1x+1(x+1)dx=C2x+1\int \frac{1}{\sqrt{x + 1} \left(x + 1\right)}\, dx = C - \frac{2}{\sqrt{x + 1}}
The graph
0.001.000.100.200.300.400.500.600.700.800.905-5
The answer [src]
      ___
2 - \/ 2 
222 - \sqrt{2}
=
=
      ___
2 - \/ 2 
222 - \sqrt{2}
2 - sqrt(2)
Numerical answer [src]
0.585786437626905
0.585786437626905

    Use the examples entering the upper and lower limits of integration.