Integral of 1/((1+x)*sqrt(x+1)) dx
The solution
Detail solution
-
There are multiple ways to do this integral.
Method #1
-
Rewrite the integrand:
x+1(x+1)1=xx+1+x+11
-
Let u=x+1.
Then let du=2x+1dx and substitute 2du:
∫u22du
-
The integral of a constant times a function is the constant times the integral of the function:
∫u21du=2∫u21du
-
The integral of un is n+1un+1 when n=−1:
∫u21du=−u1
So, the result is: −u2
Now substitute u back in:
−x+12
Method #2
-
Rewrite the integrand:
x+1(x+1)1=xx+1+x+11
-
Let u=x+1.
Then let du=2x+1dx and substitute 2du:
∫u22du
-
The integral of a constant times a function is the constant times the integral of the function:
∫u21du=2∫u21du
-
The integral of un is n+1un+1 when n=−1:
∫u21du=−u1
So, the result is: −u2
Now substitute u back in:
−x+12
-
Add the constant of integration:
−x+12+constant
The answer is:
−x+12+constant
The answer (Indefinite)
[src]
/
|
| 1 2
| ----------------- dx = C - ---------
| _______ _______
| (1 + x)*\/ x + 1 \/ 1 + x
|
/
∫x+1(x+1)1dx=C−x+12
The graph
Use the examples entering the upper and lower limits of integration.