Mister Exam

Other calculators

Integral of 1/(4cos(x)-3sinx) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                       
  /                       
 |                        
 |           1            
 |  ------------------- dx
 |  4*cos(x) - 3*sin(x)   
 |                        
/                         
0                         
$$\int\limits_{0}^{1} \frac{1}{- 3 \sin{\left(x \right)} + 4 \cos{\left(x \right)}}\, dx$$
Integral(1/(4*cos(x) - 3*sin(x)), (x, 0, 1))
The answer (Indefinite) [src]
  /                                /  1      /x\\      /       /x\\
 |                              log|- - + tan|-||   log|2 + tan|-||
 |          1                      \  2      \2//      \       \2//
 | ------------------- dx = C - ----------------- + ---------------
 | 4*cos(x) - 3*sin(x)                  5                  5       
 |                                                                 
/                                                                  
$$\int \frac{1}{- 3 \sin{\left(x \right)} + 4 \cos{\left(x \right)}}\, dx = C - \frac{\log{\left(\tan{\left(\frac{x}{2} \right)} - \frac{1}{2} \right)}}{5} + \frac{\log{\left(\tan{\left(\frac{x}{2} \right)} + 2 \right)}}{5}$$
The graph
The answer [src]
  2*log(2)   log(-1/2 + tan(1/2))   log(2 + tan(1/2))   pi*I
- -------- - -------------------- + ----------------- + ----
     5                5                     5            5  
$$- \frac{2 \log{\left(2 \right)}}{5} + \frac{\log{\left(\tan{\left(\frac{1}{2} \right)} + 2 \right)}}{5} - \frac{\log{\left(- \frac{1}{2} + \tan{\left(\frac{1}{2} \right)} \right)}}{5} + \frac{i \pi}{5}$$
=
=
  2*log(2)   log(-1/2 + tan(1/2))   log(2 + tan(1/2))   pi*I
- -------- - -------------------- + ----------------- + ----
     5                5                     5            5  
$$- \frac{2 \log{\left(2 \right)}}{5} + \frac{\log{\left(\tan{\left(\frac{1}{2} \right)} + 2 \right)}}{5} - \frac{\log{\left(- \frac{1}{2} + \tan{\left(\frac{1}{2} \right)} \right)}}{5} + \frac{i \pi}{5}$$
-2*log(2)/5 - log(-1/2 + tan(1/2))/5 + log(2 + tan(1/2))/5 + pi*i/5
Numerical answer [src]
0.711225308749378
0.711225308749378

    Use the examples entering the upper and lower limits of integration.