Mister Exam

Other calculators


t^3sin(2t^4)dt

Integral of t^3sin(2t^4)dt dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                  
  /                  
 |                   
 |   3    /   4\     
 |  t *sin\2*t /*1 dt
 |                   
/                    
0                    
$$\int\limits_{0}^{1} t^{3} \sin{\left(2 t^{4} \right)} 1\, dt$$
Integral(t^3*sin(2*t^4)*1, (t, 0, 1))
Detail solution
  1. Let .

    Then let and substitute :

    1. The integral of a constant times a function is the constant times the integral of the function:

      1. The integral of sine is negative cosine:

      So, the result is:

    Now substitute back in:

  2. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                 
 |                            /   4\
 |  3    /   4\            cos\2*t /
 | t *sin\2*t /*1 dt = C - ---------
 |                             8    
/                                   
$$-{{\cos \left(2\,t^4\right)}\over{8}}$$
The graph
The answer [src]
1   cos(2)
- - ------
8     8   
$${{1}\over{8}}-{{\cos 2}\over{8}}$$
=
=
1   cos(2)
- - ------
8     8   
$$- \frac{\cos{\left(2 \right)}}{8} + \frac{1}{8}$$
Numerical answer [src]
0.177018354568393
0.177018354568393
The graph
Integral of t^3sin(2t^4)dt dx

    Use the examples entering the upper and lower limits of integration.