Mister Exam

Integral of 2cosxdx dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1            
  /            
 |             
 |  2*cos(x) dx
 |             
/              
0              
012cos(x)dx\int\limits_{0}^{1} 2 \cos{\left(x \right)}\, dx
Integral(2*cos(x), (x, 0, 1))
Detail solution
  1. The integral of a constant times a function is the constant times the integral of the function:

    2cos(x)dx=2cos(x)dx\int 2 \cos{\left(x \right)}\, dx = 2 \int \cos{\left(x \right)}\, dx

    1. The integral of cosine is sine:

      cos(x)dx=sin(x)\int \cos{\left(x \right)}\, dx = \sin{\left(x \right)}

    So, the result is: 2sin(x)2 \sin{\left(x \right)}

  2. Add the constant of integration:

    2sin(x)+constant2 \sin{\left(x \right)}+ \mathrm{constant}


The answer is:

2sin(x)+constant2 \sin{\left(x \right)}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                          
 |                           
 | 2*cos(x) dx = C + 2*sin(x)
 |                           
/                            
2cos(x)dx=C+2sin(x)\int 2 \cos{\left(x \right)}\, dx = C + 2 \sin{\left(x \right)}
The graph
0.001.000.100.200.300.400.500.600.700.800.9004
The answer [src]
2*sin(1)
2sin(1)2 \sin{\left(1 \right)}
=
=
2*sin(1)
2sin(1)2 \sin{\left(1 \right)}
2*sin(1)
Numerical answer [src]
1.68294196961579
1.68294196961579
The graph
Integral of 2cosxdx dx

    Use the examples entering the upper and lower limits of integration.