Integral of tan^3(5x) dx
The solution
Detail solution
-
Rewrite the integrand:
tan3(5x)=(sec2(5x)−1)tan(5x)
-
There are multiple ways to do this integral.
Method #1
-
Let u=sec2(5x).
Then let du=10tan(5x)sec2(5x)dx and substitute 10du:
∫10uu−1du
-
The integral of a constant times a function is the constant times the integral of the function:
∫uu−1du=10∫uu−1du
-
Rewrite the integrand:
uu−1=1−u1
-
Integrate term-by-term:
-
The integral of a constant is the constant times the variable of integration:
∫1du=u
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−u1)du=−∫u1du
-
The integral of u1 is log(u).
So, the result is: −log(u)
The result is: u−log(u)
So, the result is: 10u−10log(u)
Now substitute u back in:
−10log(sec2(5x))+10sec2(5x)
Method #2
-
Rewrite the integrand:
(sec2(5x)−1)tan(5x)=tan(5x)sec2(5x)−tan(5x)
-
Integrate term-by-term:
-
Let u=sec(5x).
Then let du=5tan(5x)sec(5x)dx and substitute 5du:
∫5udu
-
The integral of a constant times a function is the constant times the integral of the function:
∫udu=5∫udu
-
The integral of un is n+1un+1 when n=−1:
∫udu=2u2
So, the result is: 10u2
Now substitute u back in:
10sec2(5x)
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−tan(5x))dx=−∫tan(5x)dx
-
Rewrite the integrand:
tan(5x)=cos(5x)sin(5x)
-
Let u=cos(5x).
Then let du=−5sin(5x)dx and substitute −5du:
∫(−5u1)du
-
The integral of a constant times a function is the constant times the integral of the function:
∫u1du=−5∫u1du
-
The integral of u1 is log(u).
So, the result is: −5log(u)
Now substitute u back in:
−5log(cos(5x))
So, the result is: 5log(cos(5x))
The result is: 5log(cos(5x))+10sec2(5x)
Method #3
-
Rewrite the integrand:
(sec2(5x)−1)tan(5x)=tan(5x)sec2(5x)−tan(5x)
-
Integrate term-by-term:
-
Let u=sec(5x).
Then let du=5tan(5x)sec(5x)dx and substitute 5du:
∫5udu
-
The integral of a constant times a function is the constant times the integral of the function:
∫udu=5∫udu
-
The integral of un is n+1un+1 when n=−1:
∫udu=2u2
So, the result is: 10u2
Now substitute u back in:
10sec2(5x)
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−tan(5x))dx=−∫tan(5x)dx
-
Rewrite the integrand:
tan(5x)=cos(5x)sin(5x)
-
Let u=cos(5x).
Then let du=−5sin(5x)dx and substitute −5du:
∫(−5u1)du
-
The integral of a constant times a function is the constant times the integral of the function:
∫u1du=−5∫u1du
-
The integral of u1 is log(u).
So, the result is: −5log(u)
Now substitute u back in:
−5log(cos(5x))
So, the result is: 5log(cos(5x))
The result is: 5log(cos(5x))+10sec2(5x)
-
Add the constant of integration:
−10log(sec2(5x))+10sec2(5x)+constant
The answer is:
−10log(sec2(5x))+10sec2(5x)+constant
The answer (Indefinite)
[src]
/
| / 2 \ 2
| 3 log\sec (5*x)/ sec (5*x)
| tan (5*x) dx = C - -------------- + ---------
| 10 10
/
∫tan3(5x)dx=C−10log(sec2(5x))+10sec2(5x)
The graph
Use the examples entering the upper and lower limits of integration.