Mister Exam

Other calculators


tan^3(5x)

Integral of tan^3(5x) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1             
  /             
 |              
 |     3        
 |  tan (5*x) dx
 |              
/               
0               
$$\int\limits_{0}^{1} \tan^{3}{\left(5 x \right)}\, dx$$
Integral(tan(5*x)^3, (x, 0, 1))
Detail solution
  1. Rewrite the integrand:

  2. There are multiple ways to do this integral.

    Method #1

    1. Let .

      Then let and substitute :

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. Rewrite the integrand:

        2. Integrate term-by-term:

          1. The integral of a constant is the constant times the variable of integration:

          1. The integral of a constant times a function is the constant times the integral of the function:

            1. The integral of is .

            So, the result is:

          The result is:

        So, the result is:

      Now substitute back in:

    Method #2

    1. Rewrite the integrand:

    2. Integrate term-by-term:

      1. Let .

        Then let and substitute :

        1. The integral of a constant times a function is the constant times the integral of the function:

          1. The integral of is when :

          So, the result is:

        Now substitute back in:

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. Rewrite the integrand:

        2. Let .

          Then let and substitute :

          1. The integral of a constant times a function is the constant times the integral of the function:

            1. The integral of is .

            So, the result is:

          Now substitute back in:

        So, the result is:

      The result is:

    Method #3

    1. Rewrite the integrand:

    2. Integrate term-by-term:

      1. Let .

        Then let and substitute :

        1. The integral of a constant times a function is the constant times the integral of the function:

          1. The integral of is when :

          So, the result is:

        Now substitute back in:

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. Rewrite the integrand:

        2. Let .

          Then let and substitute :

          1. The integral of a constant times a function is the constant times the integral of the function:

            1. The integral of is .

            So, the result is:

          Now substitute back in:

        So, the result is:

      The result is:

  3. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                             
 |                       /   2     \      2     
 |    3               log\sec (5*x)/   sec (5*x)
 | tan (5*x) dx = C - -------------- + ---------
 |                          10             10   
/                                               
$$\int \tan^{3}{\left(5 x \right)}\, dx = C - \frac{\log{\left(\sec^{2}{\left(5 x \right)} \right)}}{10} + \frac{\sec^{2}{\left(5 x \right)}}{10}$$
The graph
Numerical answer [src]
26555.9916796074
26555.9916796074
The graph
Integral of tan^3(5x) dx

    Use the examples entering the upper and lower limits of integration.