Mister Exam

Other calculators


tan^3(5x)

Integral of tan^3(5x) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1             
  /             
 |              
 |     3        
 |  tan (5*x) dx
 |              
/               
0               
01tan3(5x)dx\int\limits_{0}^{1} \tan^{3}{\left(5 x \right)}\, dx
Integral(tan(5*x)^3, (x, 0, 1))
Detail solution
  1. Rewrite the integrand:

    tan3(5x)=(sec2(5x)1)tan(5x)\tan^{3}{\left(5 x \right)} = \left(\sec^{2}{\left(5 x \right)} - 1\right) \tan{\left(5 x \right)}

  2. There are multiple ways to do this integral.

    Method #1

    1. Let u=sec2(5x)u = \sec^{2}{\left(5 x \right)}.

      Then let du=10tan(5x)sec2(5x)dxdu = 10 \tan{\left(5 x \right)} \sec^{2}{\left(5 x \right)} dx and substitute du10\frac{du}{10}:

      u110udu\int \frac{u - 1}{10 u}\, du

      1. The integral of a constant times a function is the constant times the integral of the function:

        u1udu=u1udu10\int \frac{u - 1}{u}\, du = \frac{\int \frac{u - 1}{u}\, du}{10}

        1. Rewrite the integrand:

          u1u=11u\frac{u - 1}{u} = 1 - \frac{1}{u}

        2. Integrate term-by-term:

          1. The integral of a constant is the constant times the variable of integration:

            1du=u\int 1\, du = u

          1. The integral of a constant times a function is the constant times the integral of the function:

            (1u)du=1udu\int \left(- \frac{1}{u}\right)\, du = - \int \frac{1}{u}\, du

            1. The integral of 1u\frac{1}{u} is log(u)\log{\left(u \right)}.

            So, the result is: log(u)- \log{\left(u \right)}

          The result is: ulog(u)u - \log{\left(u \right)}

        So, the result is: u10log(u)10\frac{u}{10} - \frac{\log{\left(u \right)}}{10}

      Now substitute uu back in:

      log(sec2(5x))10+sec2(5x)10- \frac{\log{\left(\sec^{2}{\left(5 x \right)} \right)}}{10} + \frac{\sec^{2}{\left(5 x \right)}}{10}

    Method #2

    1. Rewrite the integrand:

      (sec2(5x)1)tan(5x)=tan(5x)sec2(5x)tan(5x)\left(\sec^{2}{\left(5 x \right)} - 1\right) \tan{\left(5 x \right)} = \tan{\left(5 x \right)} \sec^{2}{\left(5 x \right)} - \tan{\left(5 x \right)}

    2. Integrate term-by-term:

      1. Let u=sec(5x)u = \sec{\left(5 x \right)}.

        Then let du=5tan(5x)sec(5x)dxdu = 5 \tan{\left(5 x \right)} \sec{\left(5 x \right)} dx and substitute du5\frac{du}{5}:

        u5du\int \frac{u}{5}\, du

        1. The integral of a constant times a function is the constant times the integral of the function:

          udu=udu5\int u\, du = \frac{\int u\, du}{5}

          1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

            udu=u22\int u\, du = \frac{u^{2}}{2}

          So, the result is: u210\frac{u^{2}}{10}

        Now substitute uu back in:

        sec2(5x)10\frac{\sec^{2}{\left(5 x \right)}}{10}

      1. The integral of a constant times a function is the constant times the integral of the function:

        (tan(5x))dx=tan(5x)dx\int \left(- \tan{\left(5 x \right)}\right)\, dx = - \int \tan{\left(5 x \right)}\, dx

        1. Rewrite the integrand:

          tan(5x)=sin(5x)cos(5x)\tan{\left(5 x \right)} = \frac{\sin{\left(5 x \right)}}{\cos{\left(5 x \right)}}

        2. Let u=cos(5x)u = \cos{\left(5 x \right)}.

          Then let du=5sin(5x)dxdu = - 5 \sin{\left(5 x \right)} dx and substitute du5- \frac{du}{5}:

          (15u)du\int \left(- \frac{1}{5 u}\right)\, du

          1. The integral of a constant times a function is the constant times the integral of the function:

            1udu=1udu5\int \frac{1}{u}\, du = - \frac{\int \frac{1}{u}\, du}{5}

            1. The integral of 1u\frac{1}{u} is log(u)\log{\left(u \right)}.

            So, the result is: log(u)5- \frac{\log{\left(u \right)}}{5}

          Now substitute uu back in:

          log(cos(5x))5- \frac{\log{\left(\cos{\left(5 x \right)} \right)}}{5}

        So, the result is: log(cos(5x))5\frac{\log{\left(\cos{\left(5 x \right)} \right)}}{5}

      The result is: log(cos(5x))5+sec2(5x)10\frac{\log{\left(\cos{\left(5 x \right)} \right)}}{5} + \frac{\sec^{2}{\left(5 x \right)}}{10}

    Method #3

    1. Rewrite the integrand:

      (sec2(5x)1)tan(5x)=tan(5x)sec2(5x)tan(5x)\left(\sec^{2}{\left(5 x \right)} - 1\right) \tan{\left(5 x \right)} = \tan{\left(5 x \right)} \sec^{2}{\left(5 x \right)} - \tan{\left(5 x \right)}

    2. Integrate term-by-term:

      1. Let u=sec(5x)u = \sec{\left(5 x \right)}.

        Then let du=5tan(5x)sec(5x)dxdu = 5 \tan{\left(5 x \right)} \sec{\left(5 x \right)} dx and substitute du5\frac{du}{5}:

        u5du\int \frac{u}{5}\, du

        1. The integral of a constant times a function is the constant times the integral of the function:

          udu=udu5\int u\, du = \frac{\int u\, du}{5}

          1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

            udu=u22\int u\, du = \frac{u^{2}}{2}

          So, the result is: u210\frac{u^{2}}{10}

        Now substitute uu back in:

        sec2(5x)10\frac{\sec^{2}{\left(5 x \right)}}{10}

      1. The integral of a constant times a function is the constant times the integral of the function:

        (tan(5x))dx=tan(5x)dx\int \left(- \tan{\left(5 x \right)}\right)\, dx = - \int \tan{\left(5 x \right)}\, dx

        1. Rewrite the integrand:

          tan(5x)=sin(5x)cos(5x)\tan{\left(5 x \right)} = \frac{\sin{\left(5 x \right)}}{\cos{\left(5 x \right)}}

        2. Let u=cos(5x)u = \cos{\left(5 x \right)}.

          Then let du=5sin(5x)dxdu = - 5 \sin{\left(5 x \right)} dx and substitute du5- \frac{du}{5}:

          (15u)du\int \left(- \frac{1}{5 u}\right)\, du

          1. The integral of a constant times a function is the constant times the integral of the function:

            1udu=1udu5\int \frac{1}{u}\, du = - \frac{\int \frac{1}{u}\, du}{5}

            1. The integral of 1u\frac{1}{u} is log(u)\log{\left(u \right)}.

            So, the result is: log(u)5- \frac{\log{\left(u \right)}}{5}

          Now substitute uu back in:

          log(cos(5x))5- \frac{\log{\left(\cos{\left(5 x \right)} \right)}}{5}

        So, the result is: log(cos(5x))5\frac{\log{\left(\cos{\left(5 x \right)} \right)}}{5}

      The result is: log(cos(5x))5+sec2(5x)10\frac{\log{\left(\cos{\left(5 x \right)} \right)}}{5} + \frac{\sec^{2}{\left(5 x \right)}}{10}

  3. Add the constant of integration:

    log(sec2(5x))10+sec2(5x)10+constant- \frac{\log{\left(\sec^{2}{\left(5 x \right)} \right)}}{10} + \frac{\sec^{2}{\left(5 x \right)}}{10}+ \mathrm{constant}


The answer is:

log(sec2(5x))10+sec2(5x)10+constant- \frac{\log{\left(\sec^{2}{\left(5 x \right)} \right)}}{10} + \frac{\sec^{2}{\left(5 x \right)}}{10}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                                             
 |                       /   2     \      2     
 |    3               log\sec (5*x)/   sec (5*x)
 | tan (5*x) dx = C - -------------- + ---------
 |                          10             10   
/                                               
tan3(5x)dx=Clog(sec2(5x))10+sec2(5x)10\int \tan^{3}{\left(5 x \right)}\, dx = C - \frac{\log{\left(\sec^{2}{\left(5 x \right)} \right)}}{10} + \frac{\sec^{2}{\left(5 x \right)}}{10}
The graph
0.001.000.100.200.300.400.500.600.700.800.90-200000000000200000000000
Numerical answer [src]
26555.9916796074
26555.9916796074
The graph
Integral of tan^3(5x) dx

    Use the examples entering the upper and lower limits of integration.