Mister Exam

Other calculators


-x/2

Integral of -x/2 dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1       
  /       
 |        
 |  -x    
 |  --- dx
 |   2    
 |        
/         
0         
01(1)x2dx\int\limits_{0}^{1} \frac{\left(-1\right) x}{2}\, dx
Integral((-x)/2, (x, 0, 1))
Detail solution
  1. The integral of a constant times a function is the constant times the integral of the function:

    (1)x2dx=(x)dx2\int \frac{\left(-1\right) x}{2}\, dx = \frac{\int \left(- x\right)\, dx}{2}

    1. The integral of a constant times a function is the constant times the integral of the function:

      (x)dx=xdx\int \left(- x\right)\, dx = - \int x\, dx

      1. The integral of xnx^{n} is xn+1n+1\frac{x^{n + 1}}{n + 1} when n1n \neq -1:

        xdx=x22\int x\, dx = \frac{x^{2}}{2}

      So, the result is: x22- \frac{x^{2}}{2}

    So, the result is: x24- \frac{x^{2}}{4}

  2. Add the constant of integration:

    x24+constant- \frac{x^{2}}{4}+ \mathrm{constant}


The answer is:

x24+constant- \frac{x^{2}}{4}+ \mathrm{constant}

The answer (Indefinite) [src]
  /               
 |               2
 | -x           x 
 | --- dx = C - --
 |  2           4 
 |                
/                 
(1)x2dx=Cx24\int \frac{\left(-1\right) x}{2}\, dx = C - \frac{x^{2}}{4}
The graph
0.001.000.100.200.300.400.500.600.700.800.90-1.00.5
The answer [src]
-1/4
14- \frac{1}{4}
=
=
-1/4
14- \frac{1}{4}
-1/4
Numerical answer [src]
-0.25
-0.25
The graph
Integral of -x/2 dx

    Use the examples entering the upper and lower limits of integration.