Mister Exam

Other calculators:


-x/2

Limit of the function -x/2

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
     /-x \
 lim |---|
x->oo\ 2 /
limx((1)x2)\lim_{x \to \infty}\left(\frac{\left(-1\right) x}{2}\right)
Limit((-x)/2, x, oo, dir='-')
Detail solution
Let's take the limit
limx((1)x2)\lim_{x \to \infty}\left(\frac{\left(-1\right) x}{2}\right)
Let's divide numerator and denominator by x:
limx((1)x2)\lim_{x \to \infty}\left(\frac{\left(-1\right) x}{2}\right) =
limx1(1)21x\lim_{x \to \infty} \frac{1}{\left(-1\right) 2 \frac{1}{x}}
Do Replacement
u=1xu = \frac{1}{x}
then
limx1(1)21x=limu0+(12u)\lim_{x \to \infty} \frac{1}{\left(-1\right) 2 \frac{1}{x}} = \lim_{u \to 0^+}\left(- \frac{1}{2 u}\right)
=
102=- \frac{1}{0 \cdot 2} = -\infty

The final answer:
limx((1)x2)=\lim_{x \to \infty}\left(\frac{\left(-1\right) x}{2}\right) = -\infty
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
02468-8-6-4-2-1010-1010
Rapid solution [src]
-oo
-\infty
Other limits x→0, -oo, +oo, 1
limx((1)x2)=\lim_{x \to \infty}\left(\frac{\left(-1\right) x}{2}\right) = -\infty
limx0((1)x2)=0\lim_{x \to 0^-}\left(\frac{\left(-1\right) x}{2}\right) = 0
More at x→0 from the left
limx0+((1)x2)=0\lim_{x \to 0^+}\left(\frac{\left(-1\right) x}{2}\right) = 0
More at x→0 from the right
limx1((1)x2)=12\lim_{x \to 1^-}\left(\frac{\left(-1\right) x}{2}\right) = - \frac{1}{2}
More at x→1 from the left
limx1+((1)x2)=12\lim_{x \to 1^+}\left(\frac{\left(-1\right) x}{2}\right) = - \frac{1}{2}
More at x→1 from the right
limx((1)x2)=\lim_{x \to -\infty}\left(\frac{\left(-1\right) x}{2}\right) = \infty
More at x→-oo
The graph
Limit of the function -x/2