Mister Exam

Other calculators:


-x/2

Limit of the function -x/2

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
     /-x \
 lim |---|
x->oo\ 2 /
$$\lim_{x \to \infty}\left(\frac{\left(-1\right) x}{2}\right)$$
Limit((-x)/2, x, oo, dir='-')
Detail solution
Let's take the limit
$$\lim_{x \to \infty}\left(\frac{\left(-1\right) x}{2}\right)$$
Let's divide numerator and denominator by x:
$$\lim_{x \to \infty}\left(\frac{\left(-1\right) x}{2}\right)$$ =
$$\lim_{x \to \infty} \frac{1}{\left(-1\right) 2 \frac{1}{x}}$$
Do Replacement
$$u = \frac{1}{x}$$
then
$$\lim_{x \to \infty} \frac{1}{\left(-1\right) 2 \frac{1}{x}} = \lim_{u \to 0^+}\left(- \frac{1}{2 u}\right)$$
=
$$- \frac{1}{0 \cdot 2} = -\infty$$

The final answer:
$$\lim_{x \to \infty}\left(\frac{\left(-1\right) x}{2}\right) = -\infty$$
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
Rapid solution [src]
-oo
$$-\infty$$
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to \infty}\left(\frac{\left(-1\right) x}{2}\right) = -\infty$$
$$\lim_{x \to 0^-}\left(\frac{\left(-1\right) x}{2}\right) = 0$$
More at x→0 from the left
$$\lim_{x \to 0^+}\left(\frac{\left(-1\right) x}{2}\right) = 0$$
More at x→0 from the right
$$\lim_{x \to 1^-}\left(\frac{\left(-1\right) x}{2}\right) = - \frac{1}{2}$$
More at x→1 from the left
$$\lim_{x \to 1^+}\left(\frac{\left(-1\right) x}{2}\right) = - \frac{1}{2}$$
More at x→1 from the right
$$\lim_{x \to -\infty}\left(\frac{\left(-1\right) x}{2}\right) = \infty$$
More at x→-oo
The graph
Limit of the function -x/2