Integral of exp(x^2/2)*(-x)/2 dx
The solution
Detail solution
-
The integral of a constant times a function is the constant times the integral of the function:
∫2−xe2x2dx=2∫(−xe2x2)dx
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−xe2x2)dx=−∫xe2x2dx
-
There are multiple ways to do this integral.
Method #1
-
Let u=e2x2.
Then let du=xe2x2dx and substitute du:
-
The integral of a constant is the constant times the variable of integration:
∫1du=u
Now substitute u back in:
e2x2
Method #2
-
Let u=2x2.
Then let du=xdx and substitute du:
∫eudu
-
The integral of the exponential function is itself.
∫eudu=eu
Now substitute u back in:
e2x2
So, the result is: −e2x2
So, the result is: −2e2x2
-
Now simplify:
−2e2x2
-
Add the constant of integration:
−2e2x2+constant
The answer is:
−2e2x2+constant
The answer (Indefinite)
[src]
/
|
| 2 2
| x x
| -- --
| 2 2
| e *(-x) e
| -------- dx = C - ---
| 2 2
|
/
∫2−xe2x2dx=C−2e2x2
The graph
21−2e21
=
21−2e21
Use the examples entering the upper and lower limits of integration.