Mister Exam

Integral of (6-x)/2 dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  2         
  /         
 |          
 |  6 - x   
 |  ----- dx
 |    2     
 |          
/           
6           
626x2dx\int\limits_{6}^{2} \frac{6 - x}{2}\, dx
Integral(6 - x/2, (x, 6, 2))
Detail solution
  1. The integral of a constant times a function is the constant times the integral of the function:

    6x2dx=(6x)dx2\int \frac{6 - x}{2}\, dx = \frac{\int \left(6 - x\right)\, dx}{2}

    1. Integrate term-by-term:

      1. The integral of a constant is the constant times the variable of integration:

        6dx=6x\int 6\, dx = 6 x

      1. The integral of a constant times a function is the constant times the integral of the function:

        (x)dx=xdx\int \left(- x\right)\, dx = - \int x\, dx

        1. The integral of xnx^{n} is xn+1n+1\frac{x^{n + 1}}{n + 1} when n1n \neq -1:

          xdx=x22\int x\, dx = \frac{x^{2}}{2}

        So, the result is: x22- \frac{x^{2}}{2}

      The result is: x22+6x- \frac{x^{2}}{2} + 6 x

    So, the result is: x24+3x- \frac{x^{2}}{4} + 3 x

  2. Now simplify:

    x(12x)4\frac{x \left(12 - x\right)}{4}

  3. Add the constant of integration:

    x(12x)4+constant\frac{x \left(12 - x\right)}{4}+ \mathrm{constant}


The answer is:

x(12x)4+constant\frac{x \left(12 - x\right)}{4}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                       
 |                       2
 | 6 - x                x 
 | ----- dx = C + 3*x - --
 |   2                  4 
 |                        
/                         
6xx246\,x-{{x^2}\over{4}}
The graph
2.06.02.53.03.54.04.55.05.5010
The answer [src]
-4
4-4
=
=
-4
4-4
Numerical answer [src]
-4.0
-4.0
The graph
Integral of (6-x)/2 dx

    Use the examples entering the upper and lower limits of integration.