Mister Exam

Integral of -cos(2x) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1             
  /             
 |              
 |  -cos(2*x) dx
 |              
/               
0               
01(cos(2x))dx\int\limits_{0}^{1} \left(- \cos{\left(2 x \right)}\right)\, dx
Integral(-cos(2*x), (x, 0, 1))
Detail solution
  1. The integral of a constant times a function is the constant times the integral of the function:

    (cos(2x))dx=cos(2x)dx\int \left(- \cos{\left(2 x \right)}\right)\, dx = - \int \cos{\left(2 x \right)}\, dx

    1. Let u=2xu = 2 x.

      Then let du=2dxdu = 2 dx and substitute du2\frac{du}{2}:

      cos(u)2du\int \frac{\cos{\left(u \right)}}{2}\, du

      1. The integral of a constant times a function is the constant times the integral of the function:

        cos(u)du=cos(u)du2\int \cos{\left(u \right)}\, du = \frac{\int \cos{\left(u \right)}\, du}{2}

        1. The integral of cosine is sine:

          cos(u)du=sin(u)\int \cos{\left(u \right)}\, du = \sin{\left(u \right)}

        So, the result is: sin(u)2\frac{\sin{\left(u \right)}}{2}

      Now substitute uu back in:

      sin(2x)2\frac{\sin{\left(2 x \right)}}{2}

    So, the result is: sin(2x)2- \frac{\sin{\left(2 x \right)}}{2}

  2. Add the constant of integration:

    sin(2x)2+constant- \frac{\sin{\left(2 x \right)}}{2}+ \mathrm{constant}


The answer is:

sin(2x)2+constant- \frac{\sin{\left(2 x \right)}}{2}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                           
 |                    sin(2*x)
 | -cos(2*x) dx = C - --------
 |                       2    
/                             
(cos(2x))dx=Csin(2x)2\int \left(- \cos{\left(2 x \right)}\right)\, dx = C - \frac{\sin{\left(2 x \right)}}{2}
The graph
0.001.000.100.200.300.400.500.600.700.800.902-2
The answer [src]
-sin(2) 
--------
   2    
sin(2)2- \frac{\sin{\left(2 \right)}}{2}
=
=
-sin(2) 
--------
   2    
sin(2)2- \frac{\sin{\left(2 \right)}}{2}
-sin(2)/2
Numerical answer [src]
-0.454648713412841
-0.454648713412841
The graph
Integral of -cos(2x) dx

    Use the examples entering the upper and lower limits of integration.