Mister Exam

Integral of -cos(2x) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1             
  /             
 |              
 |  -cos(2*x) dx
 |              
/               
0               
$$\int\limits_{0}^{1} \left(- \cos{\left(2 x \right)}\right)\, dx$$
Integral(-cos(2*x), (x, 0, 1))
Detail solution
  1. The integral of a constant times a function is the constant times the integral of the function:

    1. Let .

      Then let and substitute :

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. The integral of cosine is sine:

        So, the result is:

      Now substitute back in:

    So, the result is:

  2. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                           
 |                    sin(2*x)
 | -cos(2*x) dx = C - --------
 |                       2    
/                             
$$\int \left(- \cos{\left(2 x \right)}\right)\, dx = C - \frac{\sin{\left(2 x \right)}}{2}$$
The graph
The answer [src]
-sin(2) 
--------
   2    
$$- \frac{\sin{\left(2 \right)}}{2}$$
=
=
-sin(2) 
--------
   2    
$$- \frac{\sin{\left(2 \right)}}{2}$$
-sin(2)/2
Numerical answer [src]
-0.454648713412841
-0.454648713412841
The graph
Integral of -cos(2x) dx

    Use the examples entering the upper and lower limits of integration.