Mister Exam

Other calculators


ln^5(x)/x

Integral of ln^5(x)/x dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  E           
  /           
 |            
 |     5      
 |  log (x)   
 |  ------- dx
 |     x      
 |            
/             
1             
1elog(x)5xdx\int\limits_{1}^{e} \frac{\log{\left(x \right)}^{5}}{x}\, dx
Integral(log(x)^5/x, (x, 1, E))
Detail solution
  1. There are multiple ways to do this integral.

    Method #1

    1. Let u=log(x)u = \log{\left(x \right)}.

      Then let du=dxxdu = \frac{dx}{x} and substitute dudu:

      u5du\int u^{5}\, du

      1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

        u5du=u66\int u^{5}\, du = \frac{u^{6}}{6}

      Now substitute uu back in:

      log(x)66\frac{\log{\left(x \right)}^{6}}{6}

    Method #2

    1. Let u=1xu = \frac{1}{x}.

      Then let du=dxx2du = - \frac{dx}{x^{2}} and substitute du- du:

      (log(1u)5u)du\int \left(- \frac{\log{\left(\frac{1}{u} \right)}^{5}}{u}\right)\, du

      1. The integral of a constant times a function is the constant times the integral of the function:

        log(1u)5udu=log(1u)5udu\int \frac{\log{\left(\frac{1}{u} \right)}^{5}}{u}\, du = - \int \frac{\log{\left(\frac{1}{u} \right)}^{5}}{u}\, du

        1. Let u=log(1u)u = \log{\left(\frac{1}{u} \right)}.

          Then let du=duudu = - \frac{du}{u} and substitute du- du:

          (u5)du\int \left(- u^{5}\right)\, du

          1. The integral of a constant times a function is the constant times the integral of the function:

            u5du=u5du\int u^{5}\, du = - \int u^{5}\, du

            1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

              u5du=u66\int u^{5}\, du = \frac{u^{6}}{6}

            So, the result is: u66- \frac{u^{6}}{6}

          Now substitute uu back in:

          log(1u)66- \frac{\log{\left(\frac{1}{u} \right)}^{6}}{6}

        So, the result is: log(1u)66\frac{\log{\left(\frac{1}{u} \right)}^{6}}{6}

      Now substitute uu back in:

      log(x)66\frac{\log{\left(x \right)}^{6}}{6}

  2. Add the constant of integration:

    log(x)66+constant\frac{\log{\left(x \right)}^{6}}{6}+ \mathrm{constant}


The answer is:

log(x)66+constant\frac{\log{\left(x \right)}^{6}}{6}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                        
 |                         
 |    5                6   
 | log (x)          log (x)
 | ------- dx = C + -------
 |    x                6   
 |                         
/                          
log(x)5xdx=C+log(x)66\int \frac{\log{\left(x \right)}^{5}}{x}\, dx = C + \frac{\log{\left(x \right)}^{6}}{6}
The graph
1.01.21.41.61.82.02.22.42.60.00.5
The answer [src]
1/6
16\frac{1}{6}
=
=
1/6
16\frac{1}{6}
1/6
Numerical answer [src]
0.166666666666667
0.166666666666667
The graph
Integral of ln^5(x)/x dx

    Use the examples entering the upper and lower limits of integration.