Mister Exam

Other calculators


e^-x^4+5x^3dx

You entered:

e^-x^4+5x^3dx

What you mean?

Integral of e^-x^4+5x^3dx dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                   
  /                   
 |                    
 |  /   4         \   
 |  | -x       3  |   
 |  \e    + 5*x *1/ dx
 |                    
/                     
0                     
$$\int\limits_{0}^{1} \left(5 x^{3} \cdot 1 + e^{- x^{4}}\right)\, dx$$
Integral(E^(-x^4) + 5*x^3*1, (x, 0, 1))
Detail solution
  1. Integrate term-by-term:

    1. The integral of a constant times a function is the constant times the integral of the function:

      1. The integral of is when :

      So, the result is:

    1. Don't know the steps in finding this integral.

      But the integral is

    The result is:

  2. Now simplify:

  3. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                                              
 |                                                               
 | /   4         \             4                        /      4\
 | | -x       3  |          5*x    Gamma(1/4)*lowergamma\1/4, x /
 | \e    + 5*x *1/ dx = C + ---- + ------------------------------
 |                           4             16*Gamma(5/4)         
/                                                                
$$\int \left(5 x^{3} \cdot 1 + e^{- x^{4}}\right)\, dx = C + \frac{5 x^{4}}{4} + \frac{\Gamma\left(\frac{1}{4}\right) \gamma\left(\frac{1}{4}, x^{4}\right)}{16 \Gamma\left(\frac{5}{4}\right)}$$
The graph
The answer [src]
5   Gamma(1/4)*lowergamma(1/4, 1)
- + -----------------------------
4           16*Gamma(5/4)        
$$\frac{\Gamma\left(\frac{1}{4}\right) \gamma\left(\frac{1}{4}, 1\right)}{16 \Gamma\left(\frac{5}{4}\right)} + \frac{5}{4}$$
=
=
5   Gamma(1/4)*lowergamma(1/4, 1)
- + -----------------------------
4           16*Gamma(5/4)        
$$\frac{\Gamma\left(\frac{1}{4}\right) \gamma\left(\frac{1}{4}, 1\right)}{16 \Gamma\left(\frac{5}{4}\right)} + \frac{5}{4}$$
Numerical answer [src]
2.0948385947571
2.0948385947571
The graph
Integral of e^-x^4+5x^3dx dx

    Use the examples entering the upper and lower limits of integration.