Mister Exam

Other calculators

Integral of e^(-x)cos(nx) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                
  /                
 |                 
 |   -x            
 |  e  *cos(n*x) dx
 |                 
/                  
0                  
$$\int\limits_{0}^{1} e^{- x} \cos{\left(n x \right)}\, dx$$
Detail solution
  1. Use integration by parts:

    Let and let .

    Then .

    To find :

    1. There are multiple ways to do this integral.

      Method #1

      1. Let .

        Then let and substitute :

        1. The integral of a constant times a function is the constant times the integral of the function:

          1. The integral of the exponential function is itself.

          So, the result is:

        Now substitute back in:

      Method #2

      1. Let .

        Then let and substitute :

        1. The integral of a constant times a function is the constant times the integral of the function:

          1. The integral of a constant is the constant times the variable of integration:

          So, the result is:

        Now substitute back in:

    Now evaluate the sub-integral.

  2. The integral of a constant times a function is the constant times the integral of the function:

    1. Use integration by parts:

      Let and let .

      Then .

      To find :

      1. Let .

        Then let and substitute :

        1. The integral of a constant times a function is the constant times the integral of the function:

          1. The integral of the exponential function is itself.

          So, the result is:

        Now substitute back in:

      Now evaluate the sub-integral.

    2. The integral of a constant times a function is the constant times the integral of the function:

      1. Don't know the steps in finding this integral.

        But the integral is

      So, the result is:

    So, the result is:

  3. Now simplify:

  4. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
                           /  //           -x              -x      -x                               \               \               
  /                        |  ||  cosh(x)*e     x*cosh(x)*e     x*e  *sinh(x)                       |               |               
 |                         |  ||- ----------- + ------------- + -------------  for Or(n = -I, n = I)|               |               
 |  -x                     |  ||       2              2               2                             |    -x         |             -x
 | e  *cos(n*x) dx = C - n*|n*|<                                                                    | - e  *sin(n*x)| - cos(n*x)*e  
 |                         |  ||             cos(n*x)    n*sin(n*x)                                 |               |               
/                          |  ||          - ---------- + ----------                  otherwise      |               |               
                           |  ||             2  x    x    2  x    x                                 |               |               
                           \  \\            n *e  + e    n *e  + e                                  /               /               
$${{e^ {- x }\,\left(n\,\sin \left(n\,x\right)-\cos \left(n\,x\right) \right)}\over{n^2+1}}$$
The answer [src]
  1       cos(n)    n*sin(n)
------ - -------- + --------
     2          2          2
1 + n    e + e*n    e + e*n 
$$\frac{n \sin{\left(n \right)}}{e n^{2} + e} - \frac{\cos{\left(n \right)}}{e n^{2} + e} + \frac{1}{n^{2} + 1}$$
=
=
  1       cos(n)    n*sin(n)
------ - -------- + --------
     2          2          2
1 + n    e + e*n    e + e*n 
$$\frac{n \sin{\left(n \right)}}{e n^{2} + e} - \frac{\cos{\left(n \right)}}{e n^{2} + e} + \frac{1}{n^{2} + 1}$$

    Use the examples entering the upper and lower limits of integration.