Mister Exam

Other calculators


e^(-x)*sin(x)

Integral of e^(-x)*sin(x) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1              
  /              
 |               
 |   -x          
 |  e  *sin(x) dx
 |               
/                
0                
$$\int\limits_{0}^{1} e^{- x} \sin{\left(x \right)}\, dx$$
Detail solution
  1. Use integration by parts, noting that the integrand eventually repeats itself.

    1. For the integrand :

      Let and let .

      Then .

    2. For the integrand :

      Let and let .

      Then .

    3. Notice that the integrand has repeated itself, so move it to one side:

      Therefore,

  2. Now simplify:

  3. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                           
 |                             -x    -x       
 |  -x                 cos(x)*e     e  *sin(x)
 | e  *sin(x) dx = C - ---------- - ----------
 |                         2            2     
/                                             
$${{e^ {- x }\,\left(-\sin x-\cos x\right)}\over{2}}$$
The graph
The answer [src]
            -1    -1       
1   cos(1)*e     e  *sin(1)
- - ---------- - ----------
2       2            2     
$${{1}\over{2}}-{{e^ {- 1 }\,\left(\sin 1+\cos 1\right)}\over{2}}$$
=
=
            -1    -1       
1   cos(1)*e     e  *sin(1)
- - ---------- - ----------
2       2            2     
$$- \frac{\sin{\left(1 \right)}}{2 e} - \frac{\cos{\left(1 \right)}}{2 e} + \frac{1}{2}$$
Numerical answer [src]
0.245837007000237
0.245837007000237
The graph
Integral of e^(-x)*sin(x) dx

    Use the examples entering the upper and lower limits of integration.