Mister Exam

Other calculators

Integral of cos^23x dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  6            
  /            
 |             
 |     23      
 |  cos  (x) dx
 |             
/              
0              
$$\int\limits_{0}^{6} \cos^{23}{\left(x \right)}\, dx$$
Integral(cos(x)^23, (x, 0, 6))
Detail solution
  1. Rewrite the integrand:

  2. There are multiple ways to do this integral.

    Method #1

    1. Rewrite the integrand:

    2. Integrate term-by-term:

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. Let .

          Then let and substitute :

          1. The integral of is when :

          Now substitute back in:

        So, the result is:

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. Let .

          Then let and substitute :

          1. The integral of is when :

          Now substitute back in:

        So, the result is:

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. Let .

          Then let and substitute :

          1. The integral of is when :

          Now substitute back in:

        So, the result is:

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. Let .

          Then let and substitute :

          1. The integral of is when :

          Now substitute back in:

        So, the result is:

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. Let .

          Then let and substitute :

          1. The integral of is when :

          Now substitute back in:

        So, the result is:

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. Let .

          Then let and substitute :

          1. The integral of is when :

          Now substitute back in:

        So, the result is:

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. Let .

          Then let and substitute :

          1. The integral of is when :

          Now substitute back in:

        So, the result is:

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. Let .

          Then let and substitute :

          1. The integral of is when :

          Now substitute back in:

        So, the result is:

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. Let .

          Then let and substitute :

          1. The integral of is when :

          Now substitute back in:

        So, the result is:

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. Let .

          Then let and substitute :

          1. The integral of is when :

          Now substitute back in:

        So, the result is:

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. Let .

          Then let and substitute :

          1. The integral of is when :

          Now substitute back in:

        So, the result is:

      1. The integral of cosine is sine:

      The result is:

    Method #2

    1. Rewrite the integrand:

    2. Integrate term-by-term:

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. Let .

          Then let and substitute :

          1. The integral of is when :

          Now substitute back in:

        So, the result is:

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. Let .

          Then let and substitute :

          1. The integral of is when :

          Now substitute back in:

        So, the result is:

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. Let .

          Then let and substitute :

          1. The integral of is when :

          Now substitute back in:

        So, the result is:

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. Let .

          Then let and substitute :

          1. The integral of is when :

          Now substitute back in:

        So, the result is:

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. Let .

          Then let and substitute :

          1. The integral of is when :

          Now substitute back in:

        So, the result is:

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. Let .

          Then let and substitute :

          1. The integral of is when :

          Now substitute back in:

        So, the result is:

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. Let .

          Then let and substitute :

          1. The integral of is when :

          Now substitute back in:

        So, the result is:

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. Let .

          Then let and substitute :

          1. The integral of is when :

          Now substitute back in:

        So, the result is:

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. Let .

          Then let and substitute :

          1. The integral of is when :

          Now substitute back in:

        So, the result is:

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. Let .

          Then let and substitute :

          1. The integral of is when :

          Now substitute back in:

        So, the result is:

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. Let .

          Then let and substitute :

          1. The integral of is when :

          Now substitute back in:

        So, the result is:

      1. The integral of cosine is sine:

      The result is:

  3. Now simplify:

  4. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                                                                                                                                                               
 |                                                                   7            19            3         23            21             9             17             13            
 |    23                   11            15            5      165*sin (x)   55*sin  (x)   11*sin (x)   sin  (x)   11*sin  (x)   110*sin (x)   165*sin  (x)   462*sin  (x)         
 | cos  (x) dx = C - 42*sin  (x) - 22*sin  (x) + 11*sin (x) - ----------- - ----------- - ---------- - -------- + ----------- + ----------- + ------------ + ------------ + sin(x)
 |                                                                 7             19           3           23           21            3             17             13              
/                                                                                                                                                                                 
$$\int \cos^{23}{\left(x \right)}\, dx = C - \frac{\sin^{23}{\left(x \right)}}{23} + \frac{11 \sin^{21}{\left(x \right)}}{21} - \frac{55 \sin^{19}{\left(x \right)}}{19} + \frac{165 \sin^{17}{\left(x \right)}}{17} - 22 \sin^{15}{\left(x \right)} + \frac{462 \sin^{13}{\left(x \right)}}{13} - 42 \sin^{11}{\left(x \right)} + \frac{110 \sin^{9}{\left(x \right)}}{3} - \frac{165 \sin^{7}{\left(x \right)}}{7} + 11 \sin^{5}{\left(x \right)} - \frac{11 \sin^{3}{\left(x \right)}}{3} + \sin{\left(x \right)}$$
The graph
The answer [src]
                                                  7            19            3         23            21             9             17             13            
        11            15            5      165*sin (6)   55*sin  (6)   11*sin (6)   sin  (6)   11*sin  (6)   110*sin (6)   165*sin  (6)   462*sin  (6)         
- 42*sin  (6) - 22*sin  (6) + 11*sin (6) - ----------- - ----------- - ---------- - -------- + ----------- + ----------- + ------------ + ------------ + sin(6)
                                                7             19           3           23           21            3             17             13              
$$\sin{\left(6 \right)} + 11 \sin^{5}{\left(6 \right)} + \frac{110 \sin^{9}{\left(6 \right)}}{3} + \frac{462 \sin^{13}{\left(6 \right)}}{13} + \frac{165 \sin^{17}{\left(6 \right)}}{17} + \frac{11 \sin^{21}{\left(6 \right)}}{21} - \frac{\sin^{23}{\left(6 \right)}}{23} - \frac{55 \sin^{19}{\left(6 \right)}}{19} - 22 \sin^{15}{\left(6 \right)} - 42 \sin^{11}{\left(6 \right)} - \frac{165 \sin^{7}{\left(6 \right)}}{7} - \frac{11 \sin^{3}{\left(6 \right)}}{3}$$
=
=
                                                  7            19            3         23            21             9             17             13            
        11            15            5      165*sin (6)   55*sin  (6)   11*sin (6)   sin  (6)   11*sin  (6)   110*sin (6)   165*sin  (6)   462*sin  (6)         
- 42*sin  (6) - 22*sin  (6) + 11*sin (6) - ----------- - ----------- - ---------- - -------- + ----------- + ----------- + ------------ + ------------ + sin(6)
                                                7             19           3           23           21            3             17             13              
$$\sin{\left(6 \right)} + 11 \sin^{5}{\left(6 \right)} + \frac{110 \sin^{9}{\left(6 \right)}}{3} + \frac{462 \sin^{13}{\left(6 \right)}}{13} + \frac{165 \sin^{17}{\left(6 \right)}}{17} + \frac{11 \sin^{21}{\left(6 \right)}}{21} - \frac{\sin^{23}{\left(6 \right)}}{23} - \frac{55 \sin^{19}{\left(6 \right)}}{19} - 22 \sin^{15}{\left(6 \right)} - 42 \sin^{11}{\left(6 \right)} - \frac{165 \sin^{7}{\left(6 \right)}}{7} - \frac{11 \sin^{3}{\left(6 \right)}}{3}$$
-42*sin(6)^11 - 22*sin(6)^15 + 11*sin(6)^5 - 165*sin(6)^7/7 - 55*sin(6)^19/19 - 11*sin(6)^3/3 - sin(6)^23/23 + 11*sin(6)^21/21 + 110*sin(6)^9/3 + 165*sin(6)^17/17 + 462*sin(6)^13/13 + sin(6)
Numerical answer [src]
-0.215376946686499
-0.215376946686499

    Use the examples entering the upper and lower limits of integration.