Mister Exam

Other calculators


(x+1)/(2x²+3x-4)

Integral of (x+1)/(2x²+3x-4) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                  
  /                  
 |                   
 |      x + 1        
 |  -------------- dx
 |     2             
 |  2*x  + 3*x - 4   
 |                   
/                    
0                    
$$\int\limits_{0}^{1} \frac{x + 1}{\left(2 x^{2} + 3 x\right) - 4}\, dx$$
Integral((x + 1)/(2*x^2 + 3*x - 4), (x, 0, 1))
The answer (Indefinite) [src]
                             //             /    ____          \                      \                       
                             ||   ____      |4*\/ 41 *(3/4 + x)|                      |                       
                             ||-\/ 41 *acoth|------------------|                      |                       
  /                          ||             \        41        /                2   41|                       
 |                           ||----------------------------------  for (3/4 + x)  > --|      /        2      \
 |     x + 1                 ||               164                                   16|   log\-4 + 2*x  + 3*x/
 | -------------- dx = C + 2*|<                                                       | + --------------------
 |    2                      ||             /    ____          \                      |            4          
 | 2*x  + 3*x - 4            ||   ____      |4*\/ 41 *(3/4 + x)|                      |                       
 |                           ||-\/ 41 *atanh|------------------|                      |                       
/                            ||             \        41        /                2   41|                       
                             ||----------------------------------  for (3/4 + x)  < --|                       
                             \\               164                                   16/                       
$$\int \frac{x + 1}{\left(2 x^{2} + 3 x\right) - 4}\, dx = C + 2 \left(\begin{cases} - \frac{\sqrt{41} \operatorname{acoth}{\left(\frac{4 \sqrt{41} \left(x + \frac{3}{4}\right)}{41} \right)}}{164} & \text{for}\: \left(x + \frac{3}{4}\right)^{2} > \frac{41}{16} \\- \frac{\sqrt{41} \operatorname{atanh}{\left(\frac{4 \sqrt{41} \left(x + \frac{3}{4}\right)}{41} \right)}}{164} & \text{for}\: \left(x + \frac{3}{4}\right)^{2} < \frac{41}{16} \end{cases}\right) + \frac{\log{\left(2 x^{2} + 3 x - 4 \right)}}{4}$$
The graph
The answer [src]
nan
$$\text{NaN}$$
=
=
nan
$$\text{NaN}$$
nan
Numerical answer [src]
1.50414888376981
1.50414888376981
The graph
Integral of (x+1)/(2x²+3x-4) dx

    Use the examples entering the upper and lower limits of integration.