1 / | | 2 | sin(x)*cos (3*x) dx | / 0
Integral(sin(x)*cos(3*x)^2, (x, 0, 1))
Rewrite the integrand:
Integrate term-by-term:
The integral of a constant times a function is the constant times the integral of the function:
Let .
Then let and substitute :
The integral of a constant times a function is the constant times the integral of the function:
The integral of is when :
So, the result is:
Now substitute back in:
So, the result is:
The integral of a constant times a function is the constant times the integral of the function:
Let .
Then let and substitute :
The integral of a constant times a function is the constant times the integral of the function:
The integral of is when :
So, the result is:
Now substitute back in:
So, the result is:
The integral of a constant times a function is the constant times the integral of the function:
Let .
Then let and substitute :
The integral of a constant times a function is the constant times the integral of the function:
The integral of is when :
So, the result is:
Now substitute back in:
So, the result is:
The result is:
Now simplify:
Add the constant of integration:
The answer is:
/ | 7 5 | 2 3 16*cos (x) 24*cos (x) | sin(x)*cos (3*x) dx = C - 3*cos (x) - ---------- + ---------- | 7 5 /
2 2 17 18*sin (3)*cos(1) 17*cos (3)*cos(1) 6*cos(3)*sin(1)*sin(3) -- - ----------------- - ----------------- + ---------------------- 35 35 35 35
=
2 2 17 18*sin (3)*cos(1) 17*cos (3)*cos(1) 6*cos(3)*sin(1)*sin(3) -- - ----------------- - ----------------- + ---------------------- 35 35 35 35
Use the examples entering the upper and lower limits of integration.