Mister Exam

Other calculators


sinxcos^2(3x)

Integral of sinxcos^2(3x) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                    
  /                    
 |                     
 |            2        
 |  sin(x)*cos (3*x) dx
 |                     
/                      
0                      
$$\int\limits_{0}^{1} \sin{\left(x \right)} \cos^{2}{\left(3 x \right)}\, dx$$
Integral(sin(x)*cos(3*x)^2, (x, 0, 1))
Detail solution
  1. Rewrite the integrand:

  2. Integrate term-by-term:

    1. The integral of a constant times a function is the constant times the integral of the function:

      1. Let .

        Then let and substitute :

        1. The integral of a constant times a function is the constant times the integral of the function:

          1. The integral of is when :

          So, the result is:

        Now substitute back in:

      So, the result is:

    1. The integral of a constant times a function is the constant times the integral of the function:

      1. Let .

        Then let and substitute :

        1. The integral of a constant times a function is the constant times the integral of the function:

          1. The integral of is when :

          So, the result is:

        Now substitute back in:

      So, the result is:

    1. The integral of a constant times a function is the constant times the integral of the function:

      1. Let .

        Then let and substitute :

        1. The integral of a constant times a function is the constant times the integral of the function:

          1. The integral of is when :

          So, the result is:

        Now substitute back in:

      So, the result is:

    The result is:

  3. Now simplify:

  4. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                                             
 |                                             7            5   
 |           2                    3      16*cos (x)   24*cos (x)
 | sin(x)*cos (3*x) dx = C - 3*cos (x) - ---------- + ----------
 |                                           7            5     
/                                                               
$$-{{5\,\cos \left(7\,x\right)-7\,\cos \left(5\,x\right)+70\,\cos x }\over{140}}$$
The graph
The answer [src]
           2                   2                                   
17   18*sin (3)*cos(1)   17*cos (3)*cos(1)   6*cos(3)*sin(1)*sin(3)
-- - ----------------- - ----------------- + ----------------------
35           35                  35                    35          
$${{17}\over{35}}-{{5\,\cos 7-7\,\cos 5+70\,\cos 1}\over{140}}$$
=
=
           2                   2                                   
17   18*sin (3)*cos(1)   17*cos (3)*cos(1)   6*cos(3)*sin(1)*sin(3)
-- - ----------------- - ----------------- + ----------------------
35           35                  35                    35          
$$- \frac{17 \cos{\left(1 \right)} \cos^{2}{\left(3 \right)}}{35} + \frac{6 \sin{\left(1 \right)} \sin{\left(3 \right)} \cos{\left(3 \right)}}{35} - \frac{18 \sin^{2}{\left(3 \right)} \cos{\left(1 \right)}}{35} + \frac{17}{35}$$
Numerical answer [src]
0.202821161541116
0.202821161541116
The graph
Integral of sinxcos^2(3x) dx

    Use the examples entering the upper and lower limits of integration.