Detail solution
-
Let .
-
Apply the power rule: goes to
-
Then, apply the chain rule. Multiply by :
-
The derivative of cosine is negative sine:
The result of the chain rule is:
The answer is:
The first derivative
[src]
$$- 23 \sin{\left(x \right)} \cos^{22}{\left(x \right)}$$
The second derivative
[src]
21 / 2 2 \
23*cos (x)*\- cos (x) + 22*sin (x)/
$$23 \left(22 \sin^{2}{\left(x \right)} - \cos^{2}{\left(x \right)}\right) \cos^{21}{\left(x \right)}$$
The third derivative
[src]
20 / 2 2 \
23*cos (x)*\- 462*sin (x) + 67*cos (x)/*sin(x)
$$23 \left(- 462 \sin^{2}{\left(x \right)} + 67 \cos^{2}{\left(x \right)}\right) \sin{\left(x \right)} \cos^{20}{\left(x \right)}$$