Mister Exam

Integral of cos(nx) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1            
  /            
 |             
 |  cos(n*x) dx
 |             
/              
0              
01cos(nx)dx\int\limits_{0}^{1} \cos{\left(n x \right)}\, dx
The answer (Indefinite) [src]
  /                  //sin(n*x)            \
 |                   ||--------  for n != 0|
 | cos(n*x) dx = C + |<   n                |
 |                   ||                    |
/                    \\   x      otherwise /
sin(nx)n{{\sin \left(n\,x\right)}\over{n}}
The answer [src]
/sin(n)                                  
|------  for And(n > -oo, n < oo, n != 0)
<  n                                     
|                                        
\  1                otherwise            
sinnn{{\sin n}\over{n}}
=
=
/sin(n)                                  
|------  for And(n > -oo, n < oo, n != 0)
<  n                                     
|                                        
\  1                otherwise            
{sin(n)nforn>n<n01otherwise\begin{cases} \frac{\sin{\left(n \right)}}{n} & \text{for}\: n > -\infty \wedge n < \infty \wedge n \neq 0 \\1 & \text{otherwise} \end{cases}

    Use the examples entering the upper and lower limits of integration.