Integral of (x^2)*(cos(nx)) dx
The solution
The answer (Indefinite)
[src]
// 3 \
|| x |
|| -- for n = 0|
|| 3 |
/ || |
| ||/sin(n*x) x*cos(n*x) | // x for n = 0\
| 2 |||-------- - ---------- for n != 0 | 2 || |
| x *cos(n*x) dx = C - 2*|<| 2 n | + x *|
n3(n2x2−2)sin(nx)+2nxcos(nx)
/sin(n) 2*sin(n) 2*cos(n)
|------ - -------- + -------- for And(n > -oo, n < oo, n != 0)
| n 3 2
< n n
|
| 1/3 otherwise
\
n3(n2−2)sinn+2ncosn
=
/sin(n) 2*sin(n) 2*cos(n)
|------ - -------- + -------- for And(n > -oo, n < oo, n != 0)
| n 3 2
< n n
|
| 1/3 otherwise
\
{nsin(n)+n22cos(n)−n32sin(n)31forn>−∞∧n<∞∧n=0otherwise
Use the examples entering the upper and lower limits of integration.