Integral of cos(a*x) dx
The solution
The answer (Indefinite)
[src]
/ //sin(a*x) \
| ||-------- for a != 0|
| cos(a*x) dx = C + |< a |
| || |
/ \\ x otherwise /
$$\int \cos{\left(a x \right)}\, dx = C + \begin{cases} \frac{\sin{\left(a x \right)}}{a} & \text{for}\: a \neq 0 \\x & \text{otherwise} \end{cases}$$
/sin(a)
|------ for And(a > -oo, a < oo, a != 0)
< a
|
\ 1 otherwise
$$\begin{cases} \frac{\sin{\left(a \right)}}{a} & \text{for}\: a > -\infty \wedge a < \infty \wedge a \neq 0 \\1 & \text{otherwise} \end{cases}$$
=
/sin(a)
|------ for And(a > -oo, a < oo, a != 0)
< a
|
\ 1 otherwise
$$\begin{cases} \frac{\sin{\left(a \right)}}{a} & \text{for}\: a > -\infty \wedge a < \infty \wedge a \neq 0 \\1 & \text{otherwise} \end{cases}$$
Piecewise((sin(a)/a, (a > -oo)∧(a < oo)∧(Ne(a, 0))), (1, True))
Use the examples entering the upper and lower limits of integration.