1 / | | 2 | x *cos(a*x) dx | / 0
Integral(x^2*cos(a*x), (x, 0, 1))
// 3 \
|| x |
|| -- for a = 0|
|| 3 |
/ || |
| ||/sin(a*x) x*cos(a*x) | // x for a = 0\
| 2 |||-------- - ---------- for a != 0 | 2 || |
| x *cos(a*x) dx = C - 2*|<| 2 a | + x *|
/sin(a) 2*sin(a) 2*cos(a) |------ - -------- + -------- for And(a > -oo, a < oo, a != 0) | a 3 2 < a a | | 1/3 otherwise \
=
/sin(a) 2*sin(a) 2*cos(a) |------ - -------- + -------- for And(a > -oo, a < oo, a != 0) | a 3 2 < a a | | 1/3 otherwise \
Piecewise((sin(a)/a - 2*sin(a)/a^3 + 2*cos(a)/a^2, (a > -oo)∧(a < oo)∧(Ne(a, 0))), (1/3, True))
Use the examples entering the upper and lower limits of integration.