$$\lim_{x \to \infty} \cos{\left(a x \right)} = \cos{\left(\tilde{\infty} a \right)}$$ $$\lim_{x \to 0^-} \cos{\left(a x \right)} = 1$$ More at x→0 from the left $$\lim_{x \to 0^+} \cos{\left(a x \right)} = 1$$ More at x→0 from the right $$\lim_{x \to 1^-} \cos{\left(a x \right)} = \cos{\left(a \right)}$$ More at x→1 from the left $$\lim_{x \to 1^+} \cos{\left(a x \right)} = \cos{\left(a \right)}$$ More at x→1 from the right $$\lim_{x \to -\infty} \cos{\left(a x \right)} = \cos{\left(\tilde{\infty} a \right)}$$ More at x→-oo