0 / | | 2 | --*x*cos(a*x) dx | pi | / -pi
Integral(((2/pi)*x)*cos(a*x), (x, -pi, 0))
// 2 \
|| x |
|| -- for a = 0|
|| 2 |
|| |
||/-cos(a*x) |
2*|<|---------- for a != 0 |
||< a |
||| | // x for a = 0\
||\ 0 otherwise | || |
/ ||----------------------- otherwise| 2*x*|
/ /cos(pi*a) pi*sin(pi*a)\ | 2*|--------- + ------------| | | 2 a | | \ a / 2 <- ---------------------------- + ----- for And(a > -oo, a < oo, a != 0) | pi 2 | pi*a | \ -pi otherwise
=
/ /cos(pi*a) pi*sin(pi*a)\ | 2*|--------- + ------------| | | 2 a | | \ a / 2 <- ---------------------------- + ----- for And(a > -oo, a < oo, a != 0) | pi 2 | pi*a | \ -pi otherwise
Piecewise((-2*(cos(pi*a)/a^2 + pi*sin(pi*a)/a)/pi + 2/(pi*a^2), (a > -oo)∧(a < oo)∧(Ne(a, 0))), (-pi, True))
Use the examples entering the upper and lower limits of integration.