Mister Exam

Other calculators

Integral of (6x)/(sqrt(4x+5)) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  5               
  /               
 |                
 |      6*x       
 |  ----------- dx
 |    _________   
 |  \/ 4*x + 5    
 |                
/                 
1                 
156x4x+5dx\int\limits_{1}^{5} \frac{6 x}{\sqrt{4 x + 5}}\, dx
Integral((6*x)/sqrt(4*x + 5), (x, 1, 5))
Detail solution
  1. Let u=4x+5u = \sqrt{4 x + 5}.

    Then let du=2dx4x+5du = \frac{2 dx}{\sqrt{4 x + 5}} and substitute dudu:

    (3u24154)du\int \left(\frac{3 u^{2}}{4} - \frac{15}{4}\right)\, du

    1. Integrate term-by-term:

      1. The integral of a constant times a function is the constant times the integral of the function:

        3u24du=3u2du4\int \frac{3 u^{2}}{4}\, du = \frac{3 \int u^{2}\, du}{4}

        1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

          u2du=u33\int u^{2}\, du = \frac{u^{3}}{3}

        So, the result is: u34\frac{u^{3}}{4}

      1. The integral of a constant is the constant times the variable of integration:

        (154)du=15u4\int \left(- \frac{15}{4}\right)\, du = - \frac{15 u}{4}

      The result is: u3415u4\frac{u^{3}}{4} - \frac{15 u}{4}

    Now substitute uu back in:

    (4x+5)324154x+54\frac{\left(4 x + 5\right)^{\frac{3}{2}}}{4} - \frac{15 \sqrt{4 x + 5}}{4}

  2. Now simplify:

    (x52)4x+5\left(x - \frac{5}{2}\right) \sqrt{4 x + 5}

  3. Add the constant of integration:

    (x52)4x+5+constant\left(x - \frac{5}{2}\right) \sqrt{4 x + 5}+ \mathrm{constant}


The answer is:

(x52)4x+5+constant\left(x - \frac{5}{2}\right) \sqrt{4 x + 5}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                                                  
 |                           _________            3/2
 |     6*x              15*\/ 4*x + 5    (4*x + 5)   
 | ----------- dx = C - -------------- + ------------
 |   _________                4               4      
 | \/ 4*x + 5                                        
 |                                                   
/                                                    
6x4x+5dx=C+(4x+5)324154x+54\int \frac{6 x}{\sqrt{4 x + 5}}\, dx = C + \frac{\left(4 x + 5\right)^{\frac{3}{2}}}{4} - \frac{15 \sqrt{4 x + 5}}{4}
The graph
1.05.01.52.02.53.03.54.04.5-2020
The answer [src]
17
1717
=
=
17
1717
17
Numerical answer [src]
17.0
17.0

    Use the examples entering the upper and lower limits of integration.